EFFECT OF POLARISATION ON PULSE
BROADENING IN MULTIMODE GRADED-
INDEX OPTICAL FIBRES

indexine  terms: Fibre optics. Light pelarisation.  Optical
warveguides

A formulation of ray optics thut takes the polarisation of
clectromagnetic waves into account shows that the maximum
difference in time delay between corresponding HE and EH
modes i<, {ar almost any multimode graded-index fibre, of the
order of 10 000 (An i/ V ns/km, where ¥ is the V-numoer
of the fibre and An is the variation ol the reflractive index
between axis and cladding. The effect of polarisation on
pulse broadening is found to be negligible if the ¥-number of
the fibre is much 'arger than about 0.

The laws of scalar ray optics predict that the impulse response
width of a circularly symmetric fibre with the optimum
profile excited by a quasimenochromatic lambertian source
is about'

ATmis = 625 (Anfn)?

For exampie, if An/n= 0-01, At,;,, = 62ps/km. The best
experimental results are at least one order of magnitude
higher than the value predicted by eqn. . In this letter, we
investigate the possible effect of polarisation on pulse broaden-
ing: that is, the consequences of the fact that corresponding
HE and EH modes do not have exactly the sam2 group
velocity. For simplicity, the effect of material dispersion is
neglected and we assurne that the fibre is isotropic, circularly
symmetric, uniform and overmoded. The following cal-
culation is based on a form of rav optics that takes polarisation
changes into account.

In an inhomogeneous isotropic medium the electric field
vactor rotates along the ray, with respect to the binormal, at
a rate equal and opposite to the rotation of the binormal
itself. We can describe gualitatively the situation by saying
that the electric field tends to remain as parallel to itself as
is permitted by the requirement that it remain perpendicular
to the ray. Let us recall that the binormal of a ray is always
perpendicular to the ray and to the gradient of the refractive
index.? For circularly symmertric fibres with polar co-
ordinates (r, 4, z) the gradient of n is a purely radial vector.
On that basis, and with the help of the Hamilton equations
in Reference 1, | have obtained a simple and exact expression
for the azimuthal rate of rotation of the field with respect
to the ray binormal (or, equivalently, with respect to the ray
principal normal), which reads

dildg = —kk(P) (k3 +L30r%) . . . . . . ()

where k(r) = (w/c)a(r) and k. and [ are the axial com-
ponents of the wavenumber and angular momentum of the
ray, respectively. k. and l. are two constants of motion of
the ray. Within the WKB approximation, 4. is the propaga-
tion constant of the corresponding mode and . = u is the
azimuthal mode number. An exp [{(k.z+ ug— )] variation
of the field is assumed.

Within the weakly guiding approximation, we have
k.~ k(r) =~ k(0) = ko and p?/r? <€ k.>. Thus d0/d¢ is very
close to — 1. At the maxima of the ray radius, the principal
normal of the ray coincides with the radial direction. Because
the direction of the field is refered to the principal normal,
the variation of fover a ray period is just opposite to the change
in azimuthal angle ¢. This means that, within the weakly
guiding approximation, the direction of the field is, in fact,
fixed in space. A rotation different from zero is predicted,
however, by the exact expression (eqn. 2) if we go beyond the
weakly guiding approximation.

Because the state of polarisation of a mode, by definition,
must be independent of ¢ and z, the only permissible states
of polarisation are circular, clockwise and counterclockwise.
For definiteness we now assume that g > 0. These circularly
polarised modes suffer a phase shift equal (clockwise polarisa-
tion) or opposite (counterclockwise polarisation) to ¢+0 in
eqn. 2. The change in axial wavenumber is obtained by
dividing the variation of the phase shift ¢+¢ over a ray
period by the ray period Z, defined as the distance between
adjacent maxima of r. In general, we must integrate + Z7!
(d@+dB) in eqn. 2 over a period. Because the effect is maxi-
mum for helical rays, we shall evaluate in the next paragraph
the perturbation for that special case.

asikm . . . . . . (D)

For the special case where the ray is helical. that is, has a
constant radius (radial mode number < azimuthal mode
number), the variation of ¢ over a ray period is equal tc m,
provided that the profile k(r) is continuous. Thus the varia-
tions in axial wavenumber zare, from egn. 2

Ak. = + (#fZ) (1 +d0]dp)
= % (#)2) thulho— KRV = W3 [RY (K2 + i R) . . (3)

where R = r*. The + sign in eqn. 3 is applicable to EH,_,
modes and the — sign to HE, ., modes.
From the ray equations we have, for helical rays,

I

afZ = pli(Rk.) e T T )
kA =dIREARYER . . . .« . . e . o (4D
w = —RUAKARYdR . . . . . . . . . (d¢)

For example, if the profile is not too different from a square-
law:

KRy =kho?=2R = o o w o v o3 o8 ¥ o5 & A5)
we have, substituting eqn. Sineqn. 4,
zlZ = k.ifk: kot =k =2k u p=kR. . . (6)

Ina ﬁrst approximation, Ak. for near-square-law profiles is,
substituting eqn. 6 in egn. 3,

Ak~ w3k ke . . . . . . . . . D
Egn. 7 can be rewritten as

Ak = 2dpko ko) . . . . . . . . (8)
if we define

2= 1—=kPlke* ~2A0/n. . . . . . . . 9

and a denotes the core radius and &, the cladding wavenumber,

These expressions coincide with a resuit obtained by
Matsubara from a totally different approach® (a degenerate
perturbation of the scalar wave eguation applicable to
square-law media). It is also interesting that, for a step-index
fibre, the numerical calculations of Biernson and Kinsley®
for # =3 lead to values of 2Ak. = keen,, — &g, which
differ from eqn. 8 oniy by a multiplicative factor of 0-9. The
discontinuity of the index, however, introduces depolarisation
effects that are not accounted for by the present theory.
Thus exact agreement is not expected, For step-index fibres,
the description of EH and HE modes in terms of circularly
polarised components has been discussed by Kapany and
Burke.® We see now that this description is general.

In fibre optics, we are more interested in relative times of
flight than in propagation constants. The relative time of

flight of a mode is defined as the ratio of the time of flight of

the mode to that of plane waves on axis. The difference in
relative time of flight between an electromagnetic mode and
the corresponding scalar mode is obtained by differentiating
Ak. in expr. 8 with respect to w. Neglecting material dis-
persion, we obtain

At~ Thud*ltked® . . . . . . . . . (1O

If we replace u in expr. 10 by its maximum value for pro-
pagating modes, we obtain

Arere (8RB = & o« & 5w« w = = (TH
where
V= QAnm " kea . . . . . . . . . (12

is the V-number of the fibre. [t is interesting to compare
2ATn.x from expr. 11 with the minimum impulse width in
eqn. 1 predicted by scalar ray optics. 2Ar,... is found to
be comparable to the minimum impulse width Ar,,, when
V = 16. 1 have calculated the r.m.s. impulse width & for
a fibre with An/n = 0.005, core radius = 20 gm, 4 = | um,
from scalar ray optics and from eqn. 2 based on vector
ray optics, as a function of the exponent i of r* intheexpres-
sion of the index profile. The result is shown in Fig. 1. The
minimum value of ¢ predicted by vector ray optics is 20%
higher than the wvalue predicted by scalar ray optics. If
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An/n = 0.01, the error introduced by the scaiar approxima-
tion is only 8%,.
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Fig.1 Variation of r.m.s. impulse response width of multimode
graded-index fibre as function of exponent « of r? in profile law

Plain lines: calculated using scalar ray optics. Broken lines: calculated using
vector ray optics (the present theory), Two values of the relative change of refrac-
tive index are considered: An/n = 0-01 and 0-005. In both cases the core radius
is equal to 20 um and the wavelength is | pm

e} a(O)]? = | =205 [a)(rum (2007

In conclusion, using a simple vector ray-optics model of
propagation in circularly symmetric graded-index multimode
fibres, one can obtain the difference in time of flight between
the EH and HE modes that degenerate into a givenscalar mode
in the limit of small wavelengths. The scalar approximation
is found to be sufficiently accurate for most applications if
the fibre ¥ -number is much larger than about 20. Otherwise,
a correction needs to be introduced.

J. A. ARNAUD 15th October 1975
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