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Dispersion of tubular modes
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Abstract

I show that a theoretical expression for the dispersion (d*8/d«®) of tubular modes in
dispersive multimode square-law fibers coincides with the wave-optics result.

Introduction

Tubular modes can propagate in multimode optical fibers, and can serve
as independent communication channels [1]. The dispersion (d°8/dw?)
of each of these modes is comparable to that of a simple-mode fiber and
thus very large transmission capacities would be allowed. Over short
distances. mode coupling has been shown to be moderate. It is therefore
of interest to calculate precise values for the modal dispersion of these
modes, Such a result has been obtained by Barthelemy from a quasi-geo-
metrical optics approach [2]. We wish to show here that for the special
case of square-law profiles (k = 1), the same result can be obtained from
wave optics in the limit that the azimuthal mode number (p) is very
large. Although this agreement is expected from the correspondence
principle, the detailed verification may be of interest because it gives an
estimate of the error made in using geometrical optics.

The ray optics result

Tubular modes can be represented approximately by helical rays that
remain at a constant distance, r, from the fiber axis. Barthelemy was able
to excite such modes and to measure their dispersion (d’8/dw?. B=
propagation constant), using an original interferometric technique. Dif-
ferent tubular modes can be excited at the same time, and their dif-
ferences both in time of flight (¢), and dispersion (d¢/dA;) can be
exhibited in a plane. In the reconstruction procedure, the average time of
flight () of a pulse is proportional to the transverse distance, while
optimum focusing takes place at an axial distance proportional to
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dispersion (d¢/dA,). In principle, all the modes of a multimode fiber
could be displayed as points in a plane, but experimentally this has been
done so far only for a few modes. Considering the uncertainty in the
profile dispersion, the agreement obtained between measured and calcu-
lated values (a factor of 2) is fair.

We assume a square-law profile n(r)~ r**, k=1 but allow for an
arbitrary dispersion of the material. For reasons of clarity. we assume
that the material on axis is non dispersive (dn/dX, = 0). If it is in fact
dispersive (A, # 1.3 pm for silica). to first order, it is sufficient to add
that dispersion to the modal dispersion presently discussed.

We thus assume that

U(r, @)=1—n(r,e)/ny=A2(w)(r/r.)’ (1)

where U is a normalized index profile, n, = n (0, @) is supposed to be a
constant. A(w) denotes the relative index change and r, the core radius.
As is well known, the optimum profile is a power 2« of r, where

ko=1+A"'A; A=owdA/dw (2)

For most dopants, k is a function of w. We shall need the first derivative
of k, denoted: k; = wdk;/dw.

Let us now review Barthelemy quasi-ray-optics theory for the case
considered. For helical rays, the relationship between the azimuthal mode
number p and radius r is

(p/ky)’ =2R*dU/dR; R=r? ku=%nu (3)
and the relative time of flight 1s
T=1t/tg—1=RAU/dR — kU (4)

where ¢, is the time of flight of pulses on axis, a constant according to
our assumption. Next, we look for dispersion 7, or 7, keeping p (but not
R) a constant as the frequency varies. We get from Eqgns. (3) and (4)

+=_U[;‘u+%("0_l)("o_3)]:_U[’-‘o_("u_l)] (5)

which is a special case (k=1.7a,=0 in Eqn. (11)) of Ref. [1]. The
approximate expression in Eqn. (5) is for k, = 1. Note, incidentally, that
if we were considering only the dispersion of the material at the radius r
of the mode we would get a different result, namely

/= —Ulkq + Ko (ko= 1)] = = U [k + (xo—1)] (6)

which coincides with the correct result in Eqn. (5) only when the
optimum profile is the square-law profile (k, = 1). This is the case only at
A, =0.9 pm for germania doped silica.
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The wave optics result

Let us now consider the exact (within the paraxial-wave approximation)
Laguerre-Gauss modes. According to Ref. [3], pp. 104-106, the mode-
generating concept (or more elementary methods) leads to the [ollowing
expression for the propagation constant 8 of stationary modal solutions
(radial mode number a = 0)

B=k,—(p+1)Q (7)
where = /2A /r.. The calculation of # from Eqn. (7) is lengthy but
straightforward. Some details are given below. First note that:

t=wdr/dw, 7=t/t,—1

to=nol/c, t=LdB/dw
Thus, using Eqn. (7)

i = (cw/ny)d*B/dw? = — (cw/ng)(p+ 1)d?*Q/de? (9)
Because p is kept constant, and n, for the sake of simplicity, is kept a
constant as before. Now, since @ = V24 /r, we have first

:—Q-=(l/rﬁw\/ﬁ)x'l={l/rcwvﬁ)ﬁ{xﬂ—1) (10)
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where A = wdA/dw, and Eqgn. (2) has been used. The second derivative
involves three terms

(®)

8O _ (V& /a2 )| 8y + 2 (5= 1) = (o= 1) ()
dwzz[ﬁ/rclw)x0+5(xo— ) =g ;
If we substitute the result in Eqn. (11) into Eqn. (9). use the expression
for u in Eqn. (3)

p=koV2RU ; ky=—n, (12)

o e

and Eqn. (1), we obtain
#=—Ulkg+L(xo—1)(xo — 3)] (13)

in agreement with Egn. (5). provided 1 can be neglected compared with p
(high azimuthal mode number). Note, however, that in the experiments
reported in Ref. [2] the neglect of 1 compared with p involves fairly large
errors, of the order of 30%.
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