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Degenerate Optical Cavities. |I:

A. Arnaud
-

Effect of Misalignments

A simple expression is given for the response of degenerate cavities suffering from arbitrary misalign-

ments, and numerical resulis are presented.
Iytically with the help of a complex ray representation of ganssian beams,

The method of resonance excitation iz earried out ana-
It is first. shown that the

modulus and phase of such complex rays can be identified with, respectively, the beam radius and the
phase of the on-axis field. This identifieation simplifies the caleulation of the coupling factor between

fwo ganssian beams, which is needed in deriving the expression for the response.

For the case of con-

ventional cavities, the results are in exact agreement with resulis derived from the Laguerre-Gauss or
Hermite-Gauss mode theory. The case of degenerate cavities with large and possibly nonorthogonal

I. Introduction

The properties and applications of degenerate optieal
cavities were discussed in a previous paper.! An optical
cavity is degenerate when all of the ravs retrace their
path after a round trip. Such cavities provide fre-
quency filtering without introducing spatial filtering;
this is an important feature, in particular, in seanning
interferometers, These eavities require, however, a
very accurate alignment of their optical elements, in
contrast with the ease of conventional nondegenerate
cavities. A useful consequence is that a degenerate
cavity which incorporates a diffraction grating can be
made to resonate only in the neighborhood of a selected
frequency. The purpose of this paper is to ealeulate
the degradation of the response which results from an
arbitrary misalignment and to discuss the influence of

> input beam radius and eavity finesse.

The ease of large misalignments is also of interest
in nonresonant multipath systems such as those used
in optical delay lines® and high gain quantum ampli-
fiers®; beam axis patterns more favorable than the
Lissajou pattern obtained with conventional cavities

n be generated. A degenerate cavity ineorporating a
ime-varying element, such as a rotating mirror, may
also be useful for displaying short optical pulses.

A method, called resonance exeitation, has been used
by Fox and Li* to obtain the mode pattern in optical
cavities with the help of a computer. It consists of
adding the fields of the successive paths of an incident
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misalignments, of interest in various nonresonant multipath systems, is also disenssed.

beam, reflected back and forth inside the cavity. In
this paper, this procedure is carried out analytically,
considering an incident beam in the fundamental
gaussian mode and neglecting the chopping of the
beams at the edges of the optical elements. The total
power flowing in the cavity is ealeulated by integration.
This procedure is applicable to any type of cavity, but
it is particularly simple in the ease in which the cavity
1s degenerate. The general case of mode degenerate
cavities (which includes sueh eavities sus the plane
parallel Tabry-Perot) is first considered, and the
results are then applied to the special ease of degenerate
cavities.

Let us now diseuss the details of the method. In
Sees. IT and ITI, new results relative to the propagation
of fundamental gaussian beams are derived. Kogelnik?
has shown that the quantity X(z), defined by ¢ =
X/(dX /dz), where ¢ is the complex wavefront curvature
radius, formally obeys the paraxial ray differential
equation, as the beam propagates in a lenslike medium.
We attach o physieal signifieance to X and show that
its modulus and phase can be identified with, respee-
tively, the beam radius and the phase of the on-axis
field.

This representation of fundamental gaussian beams
by eomplex rays is useful in caleulating the coupling
between two such heams (See. 1V) and, in particular,
the coupling between an input beam and the same
beam transformed after r round trips in the cavity.
In See. V, the response of a cavity is expressed as a
funetion of this coupling factor, and the response of
degenerate cavities is considered in detail in See. VI,
The results obtained for the ecase of conventional cavi-
ties are compared with those derived from the Laguerre-
Gauss or Hermite-Gauss mode theory®—* in the Appen-
dix. The caleulations are restricted to nonaberrated
orthogonal® 1 eavities.
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1. Propagation of Optical Beams in Misaligned
Lenslike Media

Within the first-order optics approximation, the
refractive index of a lenslike medium ean be written
oy Ter Myy

N 5 fzy
Nirgz)=n+—x4+—y+ oy b s ot L1
itk n n n n "

in a ryz rectangular coordinate system. 1y Mgy Ty Moz,
Mgy, and msy, are assumed to be slowly varying complex
functions of z, and the terms following 7 to be small
compared with n. Limiting the expansion of N* to the

first order terms, the wave equation is, from Eq. (1)

#E | 8E 0
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F 2npy? + Lrga)ll =0, (2)

where F ig a transverse component of the electrie field,
and k= 27X is the free space propagation constant.
If we introduce in Eq. (2) new variables ¥’ and 2/,
defined by
¥ o= nhl, (3a)

b= Et’.x;.:(ﬂ; r nr‘!z), (3h)
o 1
z! = rh dz/'n, f.:%l'j
U

and negleet 9, dz* beeanse of the slow variation of W
with z, we find that ¥’ is solution of

Put g S ‘ "

2.t + : — 2k F 2k e + gl + Rest
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e N l® + Rary)¥ =10, (1)

Equation (4) is a straightforward ;Ivnm':\_liz:ti.inn 'nl' the
wave equation given in Ref. 5, and is consistent with the
sealar Fresnel’s diffraction theorv. o is henceforth
assumed to be unity, without loss of generality, r-'i[wo "
does not appear explicitly in Fq. (4). The imaginary
part of n must be small compared with its real part,
however, for 2/ to be real valued, and to be interpreted
as an axial coordinate.  Then, from Fgs. (3a) and (3e)
we have 2’ =z and y =y.

Let us now consider a solution ¢ of Fq. (4) with no
misalignment terms (n, = n, = 0), and solutions F, i of
the differential equations:

F =z + 2na¥ + Naylly (5a)
=y + M+ e, (5h)

where the upper dots indieate differentiations with
respect to z. By substitution in Eq. (4), we find that

Vlx,yz) = flz — X9 — 7,2)

: L #E @ L of®
woexp| —jk| X + oy — T + = 3 noxelz
2 2 2 J0:
1 i .
+ -f n,,:jn'z)], (6)
3.Joy

where 0, and 0, are, for the time being, arbitrary points
along the z axis, is a solution of the general Eq. (4).
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The phase term introduced in Eq. (6) 18 tl:i:-_:ii_v inter-
preted when n,, n,, n.., n,, and n., are real (i.e., wi.len
there is no transverse variation of the loss, or the ga.m).
In that case, Eqs. (5a) and (5b) admit real :S(.llul-ll)lllfi*
which represent paraxial rays," and the transformation
from ¢(x,y,2) to ¥(zyz) corresponds to a change in
beam axis. Let us show that, at z = & y = J, the
phase term, introduced in Eq. (6), indeed (:ul‘res.]mnds
to the additional optical path length ¢ resulting irrﬂnn a
beam axis displacement #, 7. LetdS = (d2* + d* +
di®)} be the elementary optical p:?-th length along tl\-'
beam axis. The z derivative of { is

& = N(x 7,208 /dz — N(0,0z)

) o
s (1 4 1% F Rz 4 07+ Nyl + Ny Xl l'(| + 5 + '_,')_ 1
1 d . S 1 =
oy 7i) + =(ne® + nyd). (7)
2{11; - 2

The last expression of ¢, obtained with the help of Eqs
(5a) and (5b), readily gives the on-axis ph:t.‘-_‘:(% ¢ b
integration. For later convenience, the lower limits &
integration 0, and 0,, in Eq. (6), are taken at the
points where the rays 7 and 7, respectively, intersect
the z axis. '

Equation (6) generalizes a result obtained by 'T'}(rn
and others' who have shown that the axis of a gaussian
beam, injected slightly off-axis in an aligned lt.'u.:'_;hke
medium, is a paraxial ray.f In the following sections,
only the ease of orthogonal media (n,, = 0) is dis-
eussed.

IIl. Fundamental Gaussian Beams

An important solution of Eq. (4) ix the Fuml:muen‘ta]
gaussian beam, henceforth called, for brevity, gaussian
beam. Let us give first the expression of the “(‘ll'.l of a
gaussinn beam injeeted along the :mis_ of an aligned
orthogonal medium (n, = n, = n,, = 0):

1 -’l' —'{’ ro 4 - ; ]" "

(&

where X and V oare generally complex funetions r>!"'L"
which satisfy Eqs. (5a) and (5b), respectively (with
ne = My = Npy = 0)- We eall N and Yo !‘nmp-’.i_’.r r‘n‘...r,m,i
When X and Y are real, Eq. (S) gives the field of a ray
pencil limited to rays X(z) and Y(2) i‘n the az :m‘l.l yz
planes, respeetively. Its significance is then .-;Lr-tugh
forward: the terms in front of the exponentials simp[¥
. For clarity, only these real solutions are considered here.
Complex .-ulu{inn.-:, however, are as well physically acceptable,
even in the case where the losses are neglected.

t A result similar to Eq. (6) was obtained by H. K. Rowe (un-
published work, 1964) for the case of an aligned sequence of
stigmatic lenses, .

t Note added in proof: These eomplex rays 1'(-511!l from
paraxial approximation of rays originating from a point sour
whose position is complex.  They are to be di.‘ili_ll.glll.‘:}ll_‘t] from
the eomplex rays introduced by J. B. Keller [in Caleulus of
Variations and its Application (McGraw-Hill Book Co., New
York, 1958)] for the ealculation of the diffracted field in the
shadow of a caustie.

g, 1.

it propagates in free space. Its surface (hyperboloid of revolu-

tion) can be generated by a skew ray, represented by a plain

line (or by its symmetric, represented by a dotted line), as it

rotates about the axis. The bissectrix of the two skew rays in-
tersects the axis at the wavefront center C,

-

result from the conservation of power since the ray
peneil eross section area is proportional to X'V, The
arguments of the exponential terms are the phase
shifts resulting from the wave surface curvatures.

Let us now show that a simple physical significance
ean also be attached to X (or V) in the general case
where it is complex. TFquation (S) shows that the on-
axis phase of ¢ is*

0 = phase of ¢(0,0,2) = —}[phase of X + phase of V], (9)
Thus, for a rotationally symmetric beam (X = V), the
phase of X is equal to the on-axis phase, except for a

minus sign.  The on-axis phase shift 8 experienced by a
matched beam through an optical svstem whose ray

matrix is (1, g results from Eq. (9)7:
0 = cos~YWA + D)/2; (10)
8 is real when [A + D < 2. It is taken in the 0-x

interval.

Let us now express the beam radius W (defined as the
distance from the axis where the field is reduced in in-
tensity by a factor e) and the wavefront radius R, as

-

* This result is also easily derived from Bgs. (27) and (29) of
Ref. 5 (H. Kogelnik, private communieation ).  For brevity, we
henceforth call the on-axis phase of ¢:  on-axis phase.

T A special form of Eq. (10) was given by 8. N. Vlasov and

V. L. Talanov, Izv. Vuz, Radiofiz. 8, 195 (1965).  More generally,

= if the definition [Eq. (11a)] is introduced in Eq. (9), the phase

shift. experienced by an arbitrary input beam of radius W and
wavefront radius R, is found to be

EW: (1 A
Bpue — Oin = 0tV — (= + = ).
‘ oy (h’ n)

This figure represents a fundamental gaussian beam as

functions of X and X.

One obtains, from Eqg.o (8),
setting \' = ¢ 4 jn:

AR oy kR (Y i
Lax®= 7w " \w/) )
I ; ; kX k& — né
s Hnaginary part of 2y = — 2 5"\“\_* l', (L1k)
1 S )
RC veal part of x= 5(& log{ XX #). (Ile)

It is henceforth assumed that n,, and n,, are real.  In
that case, both £(z) and 5(z) obey the paraxial ray
equation as well as X(z). 1t is easy to verify, by
differentiation with respeet to z, and use of Eq. (5a),
that the quantity (& — »£), known as the Lagrange’s
invariant, ' is independent of z.  This quantity can be
set equal to —2/k, for convenience. Henee, from
Lgs. (11b) and (11¢), the modulus of X is equal to the
beam width W, and the wavefront is perpendicular to
the beam profile W(z):

XX* = e, (12a)

R = W/W. (12b)

These results have important consequences, which are
more easily seen if we represent X (2) as a skew ray in a
£, n, 2 rectangular coordinate system. This skew ray
rotates abont the z axis as the phase of X (i.e., the on-
axis phase reference) is varied, and generates the beam
surface, whose profile is W(z). The beam profile is
consequently the envelope of the rays £(z), as shown
before in slightly different forms.'* Further, one
observes that there are two symmetrical skew rays
going through a given point on the beam surface.
Beeause of the symmetry, the tangent to the beam
profile at that point is the bisseetrix of the skew ravs.
Sinee this property is preserved under projection, the
bissectrix of any two projected skew rays intersects the
axis at the wavefront center ' (see Fig. 1), as shown by
Steier.  Figure 1 represents a gaussian beam as it
propagates in free space. The skew rays are straight
lines, in that case, and the beam surface is an hyper-
boloid of revolution. The representation of a gaussian
beam by two rays, £(z) and 4(z), provides a method of
beam tracing which is more convenient, in some eases,
than the Smith chart® or lateral foei'® methods.

A gaussian beam is usually defined, at a given plane,
by its radius W, its wavefront radius R, and its on-axis
phase ®.  From Egs. (9), (12a), and (11a), the complex
ray X and its slope X are related to these quantities by

X = We™79, (13a)
Xo= We 011/ e) — ji2/6W3), (13h)

and we have
(X*X — X*X) = A5 /. (L)

In free space, taking the origin of the z axis and the
phase reference at the beam waist, of radius w, Egs.
(13a) and (13b) become:

X

2) = w — J12/kw)z. (14}
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Fig. 2. &, and & represent the axes of two ray pencils whose

centers are Oy and Oy, respectively.  x is the ray which belongs

to the two ray pencils, The five circles drawn in this figure for

the construction of Ay and § (£,,5) are normally intersecting

the rays and the z axis; they ean be considered as wave surfaces,

The relation between the phase of the coupling factor and
these quantities 1s outlined in the text.

In See, IV, the coupling between two gaussian beams
of arbitrary orientation, whose fields are obtained upon
substitution of Eq. (S) in Eq. (6), is caleulated.

IV. Coupling Between Gaussian Beams

Let us eonsider two solutions ¥, and ¥, of Eq. (4),
and define the coupling factort between the two beams

Cabh = ff W oW Hledy, (13)

e does not depend on z as one easily verifies by differ-
entiating ¢,, with respect to z and substituting for ¥,
W, expressions taken from Eq. (4), if we assume that
WY — R, deereases rapidly as x, y tend to infinity.

Let us now ealeulate the coupling factor between two
gaussian beams, defined by their axes and complex rayvs;
X4 Xg and &, X, respectively, by introducing in Fq.
(15) the expression of the fields obtained before [Eqs.
(6) and (8)]. After integration and some rearrange-
ments, one obtains the normalized coupling factor as
the product of

47\ } b (fa — &0, Xa)(&a — 21, X0*%)
il = Ko X)) - :
Cabz ( I ) (Ao Xp™) ™ e\P[ J' (Xa,X2*)

k z z
x EXD{_}E I:f_:i‘.;_.f.s,} — f nealz + f 'n.,.i';,dz:l} (16)
Da 117

by a similar expression relative to y. In Eq. (16), (a.,8)
stands for (e — Ba&). With the help of Eq. (5a), we

a and b by

T We use the expression coupling factor rather than compler
coupling coefficient as in Hef. (6), because the definition of the
latter differs from Eq. (15) by a phase factor. The coupling
factor is proportional to the intermediate frequency current
generated in a large square law detector by two beams of nearly
equal frequencies. This eurrent is rigorously invariant, in a
lossless medium, with respect to the detector position (H.
Kogelnik, private commumication).
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iy verily that all three terms in L. (16) are inde-
pendent of the coordinate system. Notice, in par-
ticular, that both £, — & and X, obey the paraxial ray
equation with no #n, term, and that, consequently,
(%, — &, X,) is a Lagrange invariant.

The physical significance of the three terms in Eq.
(16) of the coupling factor ean be understood by evalu-
ating direetly the coupling factor between two ray
pencils, defined by two (real) rays %, & + X. and %,
& + Xy, respectively. The coupling between the pen-
eil wave surfaces is significant only at the points wherc
the phase of E,E* is stationary, i.c., on the ray x(2)
which belongs to the two pencils; on that ray, the two
wave surfaces, being normal to the same ray, are indeed
tangent to each other. The infensity of the coupling is
expected to be proportional to the field intensities, and
to the area over which the two wave surfaces do not
depart from each other by more than, say, a wave-
length:

R A
ead « Xt (2 - BV L, @

since X,/X, and X,/X, are the curvatures of the two
pencil wave surfaces. The above expression is the first
term in Eq. (16), to within a constant. I'rom the same
point of view, the phase of the coupling factor is ex-
pected to be related to the optical distance C,Cy be-
tween the ray peneil eenters €, and €, shown in Fig. 2
Sinee the phases were defined at the points 0,, 0,, where
the rays &,, &, cross the z axis, the phase of the coupling
factor must be equal to —kAr, with:

Ar = C.Co+ Gl + 00, 4 0.C.,

where the upper bars indicate optieal distances, taken
along the rays or the z axis. Ay can be written as the
sum of two terms:

Ay = 'f.[f ) +h.cm -+ m.(u + (Opaa + m[h + nJ,n : = &) + A,

where a, and «, are any two points on &, and &, re-
spectively, which are intersected normally by a cirele

this cirele can be interpreted as a wave surface. Thée

geometrie construction of Iig. 2 shows that the first
term Ay is Ay = J(%,—x, & —x). The condition that, %,,
&, + X., x on one hand, and %,, & -+ X, x on the other
hand. belong to the same ray pencils, can be written:

(®a — 3,Xa) = (B — x.Xi) = 0 -

These relations show, after a few transformations, that
—H‘AT is the argument of the first exponential term in

L. (16). _
The second term Ag is, from L. (7),

1 =z LB 1
= = |'garh = Nekatlz — Xty — - Xilz
2 O, 0y,

g

— (B — n"ra,][;f‘u + J:coJJ

] 2 2
= —- l:{.’-:'..,.i'a.J - f ne&adlz -|—f H;.if,rfz].
9 0:, 0,

R

(P}
(M} %

- ATTENUATION a

Fig. 3. This figure schematically represents a ring tvpe cavity
with an input-output mirror (M) of transmissivity £, () is an
arbitrary reference plane in the ring path.

I'his expression shows that the argument of the seeond
sscxponential term in Fq. (16) ean be obtained by evalu-
ating optical lengths along the beam axes.

V. Response of Arbitrary Optical Cavities

From the expression of the coupling factor between
two gaussian beams derived in Sec. 1V, the response of
optical cavities excited by such beams can now be
ealeulated.

Consider the ring type cavity shown schematically in
Fig. 3, incorporating an input-output mirror (M) of
transmissivity £, and let £* = ¢~%*(1 — [), where w is
the field loss in the eavity, be the total power loss per
round trip. The total power flowing through the
reference plane (P) is, to within a constant,

+o
P = f Z B (x,)L Z B> (e Lxdady, (17a)
—m =) g=()

Y erie,, (17h)
r=0 s=0
wAvhere [ (xy)€" is the field of the input beam at (P)
after » round trips, and the definition of Fq. (15) of the
coupling factor has been used.
From the invariance property of the eoupling factor,
we have

- Cra = Cf gy ifr < 8,

(18)
I L ifr > s
Let us call P, the value assumed by P in the absence of
coupling befween different paths (e, = 0 if » # s,
¢e = 1if r = s) and define the eavity response hy 7=
P/Py. Trom Egs. (17) and (18), one obtains:

= 1 + 2 real part of z L. (19)
o1

Let us remark that, in first approximation, the fre-

quency dependence of ¢, is expressed by exp(yrkl),

where [, is the cavity path length, and that, conse-

f]!wut.l_\'. the average response over a free spectr, al range
[from kly = 2K7 to 2(K + 1)x, K integer] is always
unity, and does not depend on the exeitation field.

Let us now calculate explieitly the coupling factors
¢or for the case of a cavity defined by its round trip ray
matrix. The input beam axis parameters T, Iy are
fransformed, after » round trips, into &,, &, given by the
linesar I‘Phttiun.~::

\_.r A B8 " | &
& |=|CD34d % |- (20)
1 001 1

In general (A4 + D 5 2), the 8, § terms ean be eliminated
by a proper choice of the coordinate system. This is
not possible, however, when 4 + D 2 if §/8 =
A = 1)/C = B/(D — 1). Because we are primarily
interested in the latter case (misaligned degenerate
cavities), the form Eq. (20) must be used. The complex
ray Xy defining the input gaussian beam, is transformed

by :
X .
[v1-[2 2JED )
Xl _ S 0], sin[ (A —Dy2 B[ Xo
I:A] - {( 'Nﬁ[l 1]+ sing [t' — 4 - !3),.-'2]}[:&'0]’

(21b)

since, as shown in Sees, IT and T1I, X obeys the paraxial
ray equation with no constant term. Equation (21b)
has been obtained with the help of Sylvester’s theorem. 7

I'rom the discussion of See. 1V, the second exponen-
tial term in the expression of ¢, is given by the total
optical puih length [, between two points such as # and
@, shown in Fig. 3, where a circle normally intersects
the original beam axis #(z) and the rth beam axis Z:(2).
Using the principle that two wave surfaces intereept
equal optical lengths on the rays of a ray peneil, the
following expression is obtained for [,:

r
=l Z — &y &1 — Fo)- (22)

l.v'“

It is important to notice that [, depends, in general, on
the input beam axis position. Indeed, let us consider
an input beam axis &’ different from #. Using the
;.:nm{- method as above, the new path length is found to
e

O — h — 3(&" — Xty Xo — %1°). (23)

The second term on the right-hand side of BEq. (23) is
not equal to zero, in general, and i may differ from 4.
Nevertheless, for a given input beam (defined by o,
o, X, and \..), a given cavity (defined by 4, B, (', D

6, 6, and £) and a first-path length 4, Eqs. (19), ['lﬁ),
(20), (21b), and (22) completely define the response of
the cavity to the incident beam. Let us write the ex-
pression of 7' for the ease of beams with rotational sym-
metry (Vo = Xy, V, = X)), and offsets lying in the zz
meridional plane:
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CAVITY RESPONSE

¢ IRADIANS]

Fig. 4. Response of a degenerate cavity as a function of

frequency for various degrees of misalignments, expressed by the

parameter m (m = 0 to 4), for a round trip loss equal to 0.9 dB.

The eircles correspond to the small losses—small misalignment
approximation.

T = | + 2real part of D €

v =1

T .. K (5 ___-fz:.\'i-":{'“___"7’1:\"*_}]
X L (X, X, *) lexp 7] 9 {‘\,U”\‘r‘}

r
X t!x‘p[—jﬁ‘rﬁ = JAI z; (Zp — Xoy X1 — 5»‘-1}]. (24)
B
where & and X, have to be replaced by their expressions,
Eqs. (20) and (21b), respectively. The input beam ra-
dius W and phasefront curvature radius R, can be intro-
duced in place of the complex ray parameters Xq, X,
with the help of Eqs. (13a) and (13h).

It is shown in Appendix that, in the ease of conven-
tional cavities, Fq. (24) is in exact agreement with
results obtained from the Laguerre-Gauss or Hermite-
Gauss mode theory. In See. VI, the case of mis-
aligned mode-degenerate cavities is discussed.

VI. Response of Misaligned
Mode-Degenerate Cavities

A ecavity is mode-degenerale when its characteristie
phase shift 8 is equal to zero. Al the latent roots of the
3 X 3 ray matrix [Eq. (20)] are then unity, and the rth
power of this matrix can be evaluated from the con-
fluent form of Sylvester’s theorem (Ref. 17, p. 85):

r—1) i(:{ =7)

o orr—1) ,
&= [1+r(A — D&+ rBi+ ——— (Ai + BY) + ———3,

(25a)
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wr —1) . rE=1),
M = 1) bt Doy + 2 %

. =rCx% 4+ [l — (D= 1)} +

(25b)

X, and X, are given by similar expressions without the
constant terms:

X, =1+ #A — 1)]Xe + rBXy, (26a)

X, = +CXo+ [1 + D — 1)]Xo. 26h)

The case of strictly degenerate cavities (4 = D = 1,
B = (' = 0) is of primary interest. Tquations (_25&),
(25b), (26a), (26b), (22), and (23) become, respectively,

X = Xy + 18, (27a)
£ o= &+ 15, (27h)
Xo= X (27¢)
Xe= Xo, (27d)
I, = rl, (27e)
O =1L + (&% — %a,b). (2713

Introducing Eqgs. (27a)-(27¢) in Lq. (24), the response
of a misaligned degenerate cavity is found to be simply

T =1+42 Y &£ cosreexpl—ir2(ka)], (28)
r=1
where
e= ki,
A= l[’ﬁ,,_\';le + li’ﬁ,,i'”’. (29)

For generality, the y parameters have been reintroduced
in Eq. (29).

ost \

L L —1 ]

¢ LRADIANSD

Pig. 5. This figure is a continuation of Fig. 4 for the case of _lu.rge
misalignments (m = 20 to =), with different scales. The circles
correspond to the small losses—small misalignment approximation.
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Fig. 6. A ring type cavity, degenerate in the ring plane, is re-

presented in (a). Its theoretical response and bandwidth are

shown in (b) as funetions of the misalignment parameter 25/,

where 6 is the lens offset and w the input beam waist radius, for

a cavily round trip loss equal to 4.5 dB, and a round trip path
length equal to 960 mnm.

g

In the ease of high cavity linesses and small misalign-
ments, the sum in Kq. (28) can be replaced by an in-
tegral and T expressed in closed form with the help of
error functions of complex arguments. : Let us write
down this expression at the resonance frequency

Y(p = 0):

1+ £ 1 1
Tog—t = = T ri (—) L'Xp( s ) erf(-( ), (30)
1 — £ m m? m

m == kAF,/(2¥x), (31)

where

and 5, = 7/ (1 — £) is the aligned cavity finesse.

w I, as given by Eq. (28), is plotted as a funetion of ¢,

with the help of a computer, for £ = 0.9, and various
values of m (Figs. 4 and 5). Figure 4 shows that the
response of the eavity is reduced by 0.8 dB when the
misalignment factor m is equal to 0.8. Figure 5 is a

continuation of Fig. 4 with a different scale, and corre-
sponds to the case of large misalignments. It shows
how closely beams can be packed without introdueing
any substantial interference. The frequency depen-
dence of the transmitted power does not exceed =3%,
when m is larger than 40. The response at the reso-
nance, given by Eq. (30), is shown as circles in Figs, 4
and 5. One sees that this expression gives the actual
response with a fairly good approximation when m
does not exceed 4.

As an example, let us apply Eq. (28) to the ring type
cavity deseribed in a previous paper.’s This cavity,
which is represented in Fig. 6(a), incorporates two
identieal confoeal lenses, and is degenerate in the ring
plane. The incident beam waist, of radius e, is situ-
ated al the lens focal plane (F7).  One readily sees that
the beam offset at that plane, after a round trip, is
equal to the first lens offset §, if the other cavity ele-
ments stay aligned. )

From Eq. (14), we have |X| = 2/kw, and, from Eq.
(29), kA = 25/w. The response and bandwidth of this
cavity, as obtained from Iq. (28), are plotted in Fig.
6(b), as a function of the misalignment 8, for the set of
parameters given in Ref, 18 (in the absence of laser
discharge): the cavity gain is £2 = 0.35 (see I'ig. 4 of
Ref. 18) or £ = 0.59. Figure 6(b) shows that a mis-
alignment, 25/w = 1.77 results in a 3-dB reduection in
maximum response. This theoretical result is in
acceplable agreement with the observed offset (Ref.
18): 28/w = 2 X 0.2 mm/0.26 mm = 1.55. Tt re-
sults, from L. (27f), that the resonance frequency de-
pends, in general, on the ineident beam axis position.
If the axis is tilted by an angle v about the foeal point /),
for instance, ¥q. (27f) shows that the resonance fre-
quency variation becomes equal to the free spectral
range when » = 2\/8.  No resonance frequency change
oceurs, however, if the incident beam is only offset.

In most applications, the eavity finesse is much
higher than in the previous example, and the required
aceuracy in lens and mirror alignment is mueh more
stringent. It is comparable to the one required from
plane parallel I'abry-Perot etalons (which correspond to
the ense where A = D = 1, (' = 0, B = 2d, d being the
mirror spacing, in the previous equations).

Linear cavities ean he considered as special eases of
the ring type eavities considered before.  The displace-
ment of a single internal element, such as a lens, intro-
duces, however, two misalignment terms per round
trip. In speecial circumstances, these two terms cancel
out as, for instance, in the internal lens confoecal
arrangement proposed by Pole.'*  The position of this
lens is not critical. The alignment of the two conecen-
tric end mirrors, however, stays eritical. Another
special ease worth mentioning is the confocal cavity
used with offset rays.  This cavity is, in effeet, equiva-
lent to four confocal mirrors mechanieally associated by
pairs; its alignment is not eritical, as it iz well known.
In general, two parameters have to be adjusted to align
linear degenerate cavities properly (for instance, the
tilt about the & and y axes of one end mirror), and four
parameters in the ease of ring type degenerate eavities.
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VII. Nonorthogonal Misalignments in
Degenerate Cavities

So far, eavities which ean be analyzed by considering
the behavior of rays in two perpendicular meridional
planes have been discussed.  In most ring type cavi-
ties, however, there are misalignments which cannot be
reduced to the oncs considered above because they
couple the » and y parameters. These are assoeciated
with a forsion of the cavity path.  Misalignments, how-
ever, always preserve the relative distances between
the rays of ray pencils, to the first order. Since the
most general continuous plane transformation which
satisfies this condition is a rotation, the fransformation
resulting from small misalignments is, in general, a small
rotation. The position of the cenfer and the angle of
this rotation depend on the specific misalignments in-
troduced, but not on the incident beams considered.
Sinee the transformation is repeated over and over for
the suceessive paths, the suceessive beam pattern
centers arve evenly spaced along a circle®  [In the
special case of orthogonal misalignments, the rotation
axis of the transformation is at infinity and the trans-
formation reduces to a translation, as shown by Iq.
27a)]. Such misaligned degenerate cavities tend to
filter that part of the incident field which has a rota-
tional symmetry about the rotation axis, since only
such field configurations are reproduced after a round
trip (unless the rotation angle is precisely an integral
fraction of 27, in which ease other field configurations
con resonate).

VIII. Conclusion

A simple expression for the response of degenerate
cavities suffering from orthogonal misalignments has
been derived; it was found to be in agreement with
previously reported experiments. This expression can
be written in closed form when the aligned cavity finesse
Fo 18 large, and the internal lens offset 6 18 small. 1t
shows that the eavity response decreases by 3 dB3 when
6 = 5.5m/Fs, where 1 is the beam waist radius.  The
sensitivity of degenerate cavities to misalignments of
their optical elements is consequently very high, except
in a few special cases.  The ease of nonorthogonal mis-
alignments has been shown to exhibit interesting fea-
tures for application to nonresonant multipath systems
and resonant spatial filters,

The field of view of a degenerate cavity is limited by
aberrations, by the transverse variations of the mirror
reflectivities, and by those of the gain when an active

*If a radial offset is introduced with the help of a conieal
refracting plate, a spiraling spot pattern van also be generated.
This is, however, a third-order geometrieal opties effect, which is
overlooked in the present discussion.
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medium is inserted in the eavity. Gaussian varia-
tions of the mirror reflectivities, and of the gain, can
also be handled analytically, by attaching complex
values to 7y and n,,. The calculations, however,
would be more intricate than the ones given in this
paper because the coupling factor is not invariant in
that ease. The reduction in field of view resulting
from geometrieal opties abberrations will be discussed

an

in a forthcoming paper.?

The author expresses his thanks to D. C. Hogg for

useful comments. -

Appendix. Response of Stable Cavities

In this appendix we show that the general Eq. (24),
given for the response of an arbitrary eavity (stable,
unstable, or mode degenerate), is consistent, for the
ease of conventional stable eavities, with results ob-
tained from the Laguerre-Gauss or Hermite-Gauss
mode theory.

In the case of stable eavities (# nonzero real) an opti-&

cal axis, i.e., a ray which retraces its path after a round
trip, can be defined. Let [y be its optical length, Eq.
(22) becomes

te = rlo + (zo2:)/2, (A-1)

in agreement with Eq. (16).

Taking the z axis as tangent to the optical axis at the
reference plane, the transformation of =, is the same as
the fransformation of X, Iiq. (21b).  Since both &, and
X, are now periodie funetions of 74, the term under the
sum gign in the Fq. (19) of the eavity response is also a
periodic function of 8 multiplied by £7¢¢, where
¢=Ily. Inthelimit where € — 1 (high cavity finesse),
the cavity response consists of sharp peaks located at
integral values of ¢/0, since, for these values of ¢, the
term under the sum sign becomes a periodic funetion of
0. Physieally, these peaks correspond to the ex-
citation of Laguerre-Gauss or Hermite-Giangs frans-
verse modes.

Let us compare the infensity of these modes with theg

values obtained by Nogelnik® on the basis of the
Laguerre-Gauss mode theory, for the ease of rotafion-
ally symmetrie and coaxial eavities and beams.  After
some rearrangements, using Feg. (12a), the coupling
factor ean be written:

= (cosrfl 4 j@ sinr) ~teir?, (A-2)

Cor

where ) is a mismateh factort

1 W2 Wi \2 e I 1°\?
Q= -+ T (el = . (A3
k& 2 ‘:( II'.._) ( W ) :l 8 i (_L‘ ﬁ'm) )

T With the notations of Ref. 6, @ = (2/x) — 1.

W and K ure, respectively, the mpul beam radius wnd
wavefront radius. W, and 2, are the corresponding
quantities for & matched beam.  They are given, from
the self-consistency equation' (except when 8 = (), by

1 - D— A _sind

Bo kW 28 L
- When the input beam is matched to the cavity
(@ = 1), v is equal to exp[jr(e — 6) ], since the two
beams are identical except for a phase shift r(p — #)
experienced by one of them. Inserting Fqy. (A-2) in
Eq. (19), the response becomes

¢ Ire

' = 1 + 2 real part of Z &£ (A=)
r=1

cosr —+ O sined

In the limit where £ — 1 (high eavity finesse), and
for ¢ = 6(1 + 2p) (mod 27), p being a nonnegative
integer, the sum in Eq, (A-5) can be replaced by an
integral over the interval 10 = 010 2x.  Taking ¢’ as u,

wrcomplex variable, this integral is easily evaluated with

the caleulus of residues.  Eq. (A-5) becomes

Ty 1 == 1 +_£ __._) Q__ LAP A-G
f— 1—eQ+1\Q+1/" (A-G)

in exact agreement with the result obtained from the
Laguerre-Gauss mode theory.” The integer p is now
identified with the radial mode number of the field ex-
cited in the cavity. Equation (A-6) gives the power in
transverse modes associated with a particular axial
mode. Notice that the sum of 7'(p) from p = 0 to =
does not depend on @, as one expects from a previous
remark.  Numerical caleulations show that the differ-
ence between the exact Eq. (A-5) and the approxima-
tion Eq. (A-6) of 7" does not exceed a few pereent when
6 =0.650Q=1to5and £ > 0.9, for p = 0,1,2.3.

As another example, let us consider the ease where
the incident beam is matched to the eavity except for an
offset & and a tilt & of its axis. Let us substitute in
Eq. (24) X" for X, and assume, for simplicity, that

WA = D. In that ease, we have (/sind = —sing/'B =

—2/ kw?, where w is the input beam radius. The cou-
pling factor becomes

Cor = eXpl —jrédexp [— (1 — vn,-;;‘&]lu!E]pr!'.jrge —~_j;:'i|1:-6i(;i5’-;

= exp(—|a|*)expl|aftexp( —jro)lexpljr(¢ — 6)], (A7)

where
) Gaeo /o ) = (ks pi2)% (A-5)
In the [i|nilv\\'hv!1-: L= 1, and for ¢ = (¢ + 1), ¢ being
a nonnegative integer, Eg. (A-T) presents only one
vs.-sr_‘_nll:il singularity at the origin (¢ = 0). The
cavity response hecomes
L+ £ |u)
L — & !

Fesig o=

expl —|al?), LA-)

inexact agreement with the Hermite-Gauss  mode
theory [Ref. 7, Eq. (9) .
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