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Detuned inhomogeneously broadened laser linewidth
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Abstract. Essentially closed-form formulae are given for the linewidth of inhomogeneously
broadened lasers, with arbitrary cavity detuning and pumping statistics (Poissonian or quiet
pumps). The so-called *bad-cavity’ mode of operation is treated. The general formula is obtained
from a semiclassical theory first derived from a linearized symmetrically ordered quantum theory
in the limit of a large number of atoms. This semiclassical theory is most easily explained in
terms of independent quantum jumps performed by emitting and absorbing atoms. The effect of
inhomogeneous broadening on linewidth is found to be negligible for some pumping schemes,
but when the atoms are independently pumped the linewidth is proportional (at some constant
power level) to the gain-medium spectral width. We consider, in particular, an intermediate
situation in which the rate at which atoms are promoted from the lower to the upper level (pump
rate) is proportional to the lower-state population for each atom class. For that particular model,
pump fluctuations do not affect the linewidth, even when the cavity is detuned from the centre
of the atomic transition frequency distribution.

1. Introduction

In many applications (e.g. optical communication or interferometric detection of
gravitational waves) it is important to minimize laser linewidths at some power level. The
main purpose of this paper is to show that for some pumping schemes laser linewidths are
significantly enhanced by inhomogeneous broadening. This is a consequence of the fact
that most atoms are strongly detuned and therefore exhibit large phase-amplitude coupling
factors . It is well known (particularly for semiconductors) that this e-factor may result
in linewidth broadening by approximately 1+ . This crude conclusion, however, needs
to be qualified.

When active media are homogeneously broadened (high-pressure gases) the linewidth
follows from a simple formula established independently in 1966 by Haken [1] and Lax [2]
and quoted in equation (1) later in this paper. This formula shows that the linewidth-power
product is constant. It also shows that the linewidth is inversely proportional to the square
of the sum of two characteristic times: 7., relating to the lossy cavity, and , relating to the
atoms. The so-called ‘bad-cavity’ mode of operation corresponds to the case 7. < 7. The
linewidth is also proportional to a ‘spontaneous-emission factor’ Nsp = ne/(ne — ny), where
n. and n, denote the fractions of atoms in the upper and lower levels, respectively. For some
laser-mirror reflectivities, there is a minimum number, N, of active atoms required to permit
oscillation at full population inversion. If the laser is constructed with a larger number, N,
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of active atoms, the condition that the gain equals the loss implies that population inversion
is incomplete, since the gain, which is proportional to N (n. — n,), must remain equal to the
mirror loss; we have N(n. — n,) = Ny. For two-level atoms with n. +n, = 1, it follows
that ng, = (1 + N/Np)/2. But this simple relation does not hold for inhomogeneously
broadened lasers.

A medium is called ‘inhomogeneously broadened’ when it contains atoms whose
transition frequencies do not coincide. This may be due to the Doppler effect in gas lasers,
to the environment of rare-earth ions in glass-fibre lasers or to the presence of different
isotopes. At low temperatures (7 = 4 K), the homogeneous spectral width of glass fibres,
for example, falls below the GHz range while inhomogeneous spectral widths remain in
the THz range. In this paper only Lorentzian lineshapes are considered and spectral widths
(or oscillator linewidths) are defined as full widths at half maximum. The homogeneous
spectral width is denoted by 1/7o and the spectral width of the atomic transition frequency
distribution is denoted by 1/7;. The medium-gain spectral width is the sum of the two:
1/te = 1/10 + 1/7. Our second parameter is the ratio r = 1y/7. of the medium gain and
homogeneous spectral width. We are particularly interested in the limit in which r goes
to infinity. For gas lasers, a Gaussian distribution of atomic frequencies is justified by
the Maxwell distribution of velocities. But for solid-state lasers the frequency distribution
depends on fabrication techniques and Lorentzian shapes are plausible.

Our third parameter, 8, refers to frequency detuning (for brevity, angular frequencies
are simply called ‘frequencies’). The parameter § is equal to the difference between the
oscillation frequency w and the atomic-distribution centre frequency w;, normalized to the
inhomogeneously broadened medium spectral width. We find that the laser linewidth—power
product can be expressed in closed form in terms of the three dimensionless parameters just
defined, namely n = N /N, r and 8. Closed forms will be given, however, only for special
cases because the general expression is bulky.

Linewidth formulae applicable to inhomogencously broadened lasers were given first by
Haken [1], Manes and Siegman [3] and recently by Khoury er al [4]. Experimental results
have been reported by Kuppens er al [5]. Our theoretical conclusions depart significantly
from those reported in [4]; for example, we find that the linewidth does not depend on pump
fluctuations, while, according to [4], it does so significantly. The reason for this discrepency
is that inhomogeneously broadened laser linewidths depend critically on the details of the
pumping mechanism. In [4] it is assumed that the pumping rate is the same for all the atoms
and is independent of the populations. The pumping scheme considered in the present paper
is more realistic, at least for solid-state lasers (e.g. Er** lasers operating at 1.55 um and
pumped at 1.45 pum). The pumping rate is assumed to be proportional to the lower state
population for each atomic class (or spectral packet). As far as the pump fluctuations are
concerned, we consider that a single pump, whose fluctuations are characterized by some
relative-intensity noise (which vanishes for a Poissonian pump), is shared by the different
atoms. The fluctuations of the pump rates for different atoms are correlated, unless the pump
is Poissonian. On the other hand, our theory is less general than the one in [4] because
some decay rates are neglected, for simplicity.

Our calculations are based on a semiclassical theory, called ‘classical (or circuit) theory’
to distinguish it from alternative semiclassical theories. Before discussing the specific case
of inhomogeneously broadened lasers, let us explain the main concepts, summarizing two
recent tutorial papers [6, 7] (see also [8]).

As is well known, quantum theory may be written with either normal or symmetric
ordering of the operators. Both methods, if carried out consistently, end up with the same
predictions for measurable quantities. But when a quasi-linear approximation is applied
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and the operator nature of the optical field is ignored, two distinct semiclassical theories
emerge. Normal ordering leads to the so-called ‘phasor’ theory (much employed in the
optical-engineering literature), according to which laser-light fluctuations are caused by the
optical power spontaneously emitted in the oscillating mode by excited state atoms.

In 1967, Gordon [9] derived from symmetrically ordered quantum theory a semiclassical
theory, which is essentially the one employed in the present paper. In 1988, unaware of
that earlier work, I constructed a similar theory on the basis of intuitive arguments [10]. An
heuristic explanation of the noise sources is based on the quantum-jump concept introduced
by Bohr in 1913. (For a modern discussion relating to quantum jumps, see [11]. The
dynamics of isolated atoms discussed in that reference, however, is not important in the
present context because we consider a large number of atoms. The continuous measurements
responsible for quantum jumps may result from coupling of the atomic states to electronic
continua. No consideration of spontaneous emission is required.)

A strictly classical theory provides only the (short-time) average rate at which atoms
are raised from the lower to the upper level as a result of stimulated absorption and predicts
smooth evolutions of the rates (a similar argument applies to atoms initially in the upper
state, absorption being replaced by emission). But assume momentarily that the average
rate is constant. Atomic jumps are, from our viewpoint, the fundamental sources of noise.
The occurrence times are independent (i.e. Poissonian) because different atoms do not
‘communicate’ with one another, so to speak: their wavefunctions do not overlap and the
optical field has a prescribed value. It follows that one must add to the average jump rate
(R) a fluctuating rate r(t) whose (double-sided) spectral density is equal to the (short-time)
average rate (R). This prescription applies to both atoms in the upper and lower states. An
application of this principle to detuned atoms shows further that r(r) must be a complex
function of time whose real and imaginary parts are uncorrelated and have spectral densities
equal to (R). This imaginary part of r(¢) is responsible for nonzero laser linewidths.

In that theory, it is essential to ensure conservation of particle numbers, as discussed in
appendix A of [7]. Pump fluctuations enter at that point. Note that pump fluctuations in
no way affect the fundamental r(r) noise sources. They are viewed simply as modulations
of the pump power by some random function of time, even in the so-called ‘quantum’ (or
near shot-noise) regime.

According to this picture, laser noise is ascribed to stimulated quantum jumps rather
than to spontaneous emission in the mode. In spite of these vastly different interpretations,
the two semiclassical theories just discussed lead to the same expressions for the spectral
densities of measurable fluctuations and also agree with quantum theory in the limit of a large
number of atoms. There are, however, reasons to favour the classical theory over the phasor
theory. One reason is that the phasor theory introduces intermediate random functions of
time that are unphysical. For example, the ‘light intensity’ spectral density (from which,
incidentally, the expression ‘relative-intensity noise’ originates) may be negative. This is
meaningless for any measurable function of time. Our classical theory is, on the other hand,
much simpler than the exact quantum theory because the large-atom-number approximation
is introduced from the very beginning, rather than at the end of difficult calculations.

Let us now go back to the specific problem at hand. For simplicity, a single mode of
oscillation is considered. It is assumed that the atoms are submitted to the same relative
field-intensity fluctuations. This approximation, also made in [4], applies to lasers provided
the mirror reflectivities are close to unity (uniform or mean-field approximation). The
difficult case of low-reflectivity mirrors cannot be treated adequately here.

A formula for the linewidth of single-mode lasers containing different pieces of
semiconductors, or atoms, was reported in 1988 [10] on the basis of the classical theory



510 J Arnaud

outlined above. This formula accounts for the effect of reduced pump fluctuations and
dispersive loads. It is, in principle, applicable to inhomogeneously broadened lasers, except
for two assumptions that were made for simplicity, but are not essential.

It is assumed in [10] that the pump rate absorbed by each element is independent of
the population difference of that element. This assumption is legitimate for laser diodes
because each element is pumped by a high-impedance electrical-current source. In that case
the 14a? factor applies in full and the linewidth may be further enhanced by pump-intensity
fluctuations. This assumption would also apply to solid-state lasers if inhomogeneous
broadening were caused by independently pumped isotopes. But for most gas or solid-state
lasers, different atoms (or ions) share the same pump power and the pump rate absorbed
by each atom (or more accurately by each spectral packet) depends significantly on its
population. When N & Ny the 1+« factor turns out to be suppressed. But when N 3> No
inhomogeneous broadening contributes a factor approximately equal to %n (n = N/Nyp).
In the large-n limit, the linewidth-enhancement factor tends to the inhomogeneous-to-
homogeneous spectral widths ratio r, as reported in [7] without, regrettably, appropriate
qualifications.

In [10] load dispersion was accounted for but atomic dispersion was neglected due to
the broad gain linewidth of semiconductors. In the present paper, an arbitrary number of
atoms, of degree of inhomogeneous broadening and detuning, are considered.

Comparison between the power-linewidth product with and without inhomogeneous
broadening is presented in figure 1, for n = 10 and r = 10, as a function of detuning
4. In the ‘good-cavity’ case considered in this figure, it is equivalent to increasing r by
increasing inhomogeneous broadening or by decreasing the homogeneous spectral width.
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Figure 1. The normalized linewidth t2(P/hw)éw in the good-cavity limit (re 3 1) is plotted
as a function of the normalized detuning § = 2t.(w — w;) from the centre of the atomic-
frequency distribution, for a homogeneously broadened laser (r = 1) and for an inhomogeneously
broadened laser with r = 7/, = 10. The atom-number parameter n = N /Ny = 10.
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Detuning turns out to be rather unimportant, as one expects, since most atoms are detuned
anyway from the oscillation frequency in strongly inhomogenously broadened lasers. As
mentioned earlier in this introduction, much above threshold pump-intensity noise does not
affect linewidths.

The results presently reported assume steady-state stable operation. It has been
established that inhomogeneously broadened lasers are prone to instabilities. The reader
is referred for that problem, not treated here, to the review by Abraham et al [12].

In order to verify the present theory experimentally, it would be necessary to construct
a laser with strong inhomogeneous broadening and a large number of atoms (ions). Glass-
fibre lasers operating at low temperatures (T = 4 K) would meet these conditions, but it
is only recently that such lasers were made to operate single mode and only upper bounds
to the linewidth (=1 kHz) were reported, while the quantum-limited linewidths are of the
order of 1 Hz.

We find it convenient to employ a circuit representation for both the optical resonator
and the atoms, similar to the one presented by Gordon [9]. The resonator is represented by
a parallel inductance-capacitance circuit resonating at frequency .. The voltage V across
this circuit is proportional to the internal optical field (denoted by A in [4]). The relationship
between this electrical circuit and two-mirror resonators commonly employed is discussed,
for example, in [6]. The proportionality constants need not be given here because they
do not enter in the final formulae. This resonator is supposed to contain absorbing atoms
(modelling mirror losses, for example) and emitting atoms differing from each other only
by their transition frequencies wy, where k labels the atoms,

Each atom is represented by a resonating series inductance—capacitance-resistance
circuit resonating at the atomic transition frequency wy. The resistance, representing atomic-
polarization damping, is inversely proportional to the so-called ‘transverse’ decay time. In
this circuit model, the electric current /(w,d) is proportional to the time derivative of
the atomic polarization (denoted by M in [4]). Each atom is therefore represented by
an admittance ¥ (w,d) = I(w,d)/V, depending on frequency w and proportional to the
population difference d = n, — n,.

The fundamental noise source discussed earlier may be represented by a white Gaussian
current source c(f) in parallel with the resistance of the atom equivalent circuit. But in
the steady-state regime considered, it is simpler to represent noise by complex fluctuating
rates r(t) = r'(t) 4+ ir"(r) as discussed earlier. Let us clarify our notation further: an
admittance is denoted by ¥ = G +1B; V is understood to be a root-mean-square value and
is divided by +/Ziw, so that the real photon rate absorbed by an atomic conductance G reads
simply as R’ = G|V|?. Time dependences are denoted by exp(—iwt). Laser-diode intensity
fluctuations are conveniently expressed in terms of a relative-intensity noise (Ny).

For convenient reference, let us quote the expression of the angular linewidth dw of
homogeneously broadened lasers [1, 2]. Assuming a linear cold nondispersive absorber

B 1+ a‘g 147 o

PR T o = 21p(w — ayp) (1)

where P denotes the optical power transferred from the emitting atoms to the absorber,

w — wp is the detuning and ro" the gain linewidth. Note that o, as we define it, is positive

above the atomic-transition frequencies, but the sign of «p does not matter in equation (1).
The cavity lifetime is

TLh @
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The first expression of 7. in equation (2) is applicable to lumped-circuit resonators of
capacitance C and absorbing conductance G. The second expression is applicable to Fabry—
Pérot resonators of length L, group velocity vg and mirror power transmissions T and T2,
respectively, where T = | — R if R denotes the power reflection.

The n-parameter is related to the population difference d = e — Na where n. denotes
the fraction of atoms in the emitting state and n, the fraction of atoms in the absorbing
state. We consider two-level atoms with ne +na=1:

he+na _ 1 1+n
L gy = =5 3)
If there is a full population inversion n and nsp are unity.

The linewidth formula, equation (17) in section 2, is valid for any collection of emitting
and absorbing atoms (or semiconductors) and pumping schemes. In section 3, we consider
the response of two-level atoms. For Lorentzian atomic-frequency distributions, the general
formula is in equations (35) and (36) of section 4. Special cases are considered in section 5,

in particular the large inhomogeneous—broadening limit.

2. Multiple-element laser linewidth

Our laser model is 2 circuit consisting of any number of admittances —Yi(w, dy) in
parallel, where @ denotes the oscillation angular frequency and d, the population difference,
submitted to voltage V at frequency @. For each element, a complex emitted photon rate

Re(@. di IV = =Ya(@ AV + 71 €
is defined (the minus sign 1s introduced so that R' is positive for emitters). The ry = ry+iry
are complex white Gaussian-noise rates (not to be confused with the parameter r). From the
observation that atoms submitted to prescribed optical fields are independent, it follows that
r; and ry are uncorrelated and have spectral densities equal to N Ry, where the 7, describing
incomplete population inversion, are given in equation (3) with the label k (primes denote
real parts).

Let Pi(dy) + px denote the net pump rate, namely the difference between the pump
rate J; and the spontaneous decay rate Sy. The py are net pump-rate fluctuations. The
pump srelative-intensity noise’ is denoted by Ne = (6§ — 1)/J, where J denotes the mean
pump rate and £J the spectral density of its fluctuations, with £ = 0 for a quiet pump and
g=1fora Poissonian pump. N, is independent of (cold, linear) attenuations, even if it is
negative (¢ < 1)- If the pump light is split into any number of beams, the cross-spectral
densities between Pk and p¢ read

S = (Ji + S8kt + JeJeNs ®)

where & = 1 if k = ¢ and 0 otherwise. The pump fluctuations pk and p, are partly
correlated because elements « and £ share the same pump power, except for Poissonian
pumps. The above result is readily obtained by considering 2 transmission line terminated
by any number of conductances Gk summing up to the transmission line characteristic
conductance. These G are endowed with independent noise sources g as in equation (4).
This formulation [6] is an alternative to the often employed beamsplitter model, with the

same end result.

The laser linewidth depends only on low-frequency fluctuations. In that limit, real
emitted rates are equal to pump rates for each element k (atom OF ion), that is, using
equation (4)

—Grl, dOIVI* + ri = Peldi) + P 6)
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Expanding equation (6) to first order we obtain
il ' !
Ak+Ek+Rkp=Ck+pk
where we have set .

A = R Aw + 1, =
" 4 Ey = RiaAdy Cy = PiyAd, p=AVE/|V] (8)

where Aw and Ad i
« are small increments of w and di. Subscripts @ and 4 d
enote partial

derivatives with r
espect to w and dy, re i i
i ks spectively. Quantities
y aFe} values, even though this is not indicated expli ’SUCh et e
Equation (7) may be written as e

, E, = a(pr — Ryp — AY)
if we introduce the parameters .

1
= h 1
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k/Eg 1 PM/RM (10)
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odel considered is an isolated circuit, the total complex emitted
itted rate

(including the imagi
ginary rate R (w) = — 2 R
To first order, we therefore hav; ) B.(w)|V|* entering into the resonator) vanishes

0=AR=
| Z:(Ak + Ey + Ryp) = Z(Ak + Ep)
since the average rate _ R, = 0. o

Ay

Separating the real and imagi
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the definition of A; i i
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with coefficients equal to the squares of their coefficients in equation (16). The general
expression for the laser linewidth is therefore

_ D0+ @+ 87 ImR) + T 5ieSyp
{ DIRY, + (@ + 8 RY,))

The double sum in the numerator of equation (17) reduces to a sum plus the square of
a sum on account of the expression of the cross-spectral densities in equation (5), in which
we neglect, for simplicity, the spontaneous (radiative or nonradiative) decay terms Sy. This
approximation is a valid one when the pump power exceeds, approximately, ten times the
threshold value. To avoid confusion, let us emphasize that neglecting S; in no way affects
the fundamental noise sources ry(t) responsible for nonzero linewidths. Furthermore, from
the expression of a in equation (14) and the fact that J; = R} we have ) §J; = 0 and
thus the term proportional to the pump-laser relative-intensity noise drops out. Therefore,
in the present model, the laser linewidth is independent of pump-intensity fluctuations. This
conclusion also holds when spontaneous decay is taken into account provided the laser can
be tuned at the line centre. In the general case of nonsymmetrical lineshapes and with
spontaneous decay accounted for, linewidths may be enhanced by pump fluctuations,

Let us introduce the total real rate R’ = P /hw transferred from emitting to absorbing
atoms, where P denotes the total laser output power and fiew the photon energy. If the
numerator in equation (17) is divided by R’ and the denominator by R’?, we obtain

dw

(17

P 4+ a2 + {[1 + (s + 8:)* 0k + 87 ay
4—8w = i
1) '-'.'§

(18)

In the numerator of equation (18) we have extracted the linear loss term labelled ‘0’ (with
ay=0,8) =0, no = 1), namely 1 + a2. In the second term in the numerator, ‘av’ denotes
a sum over active atoms only with the R, as weighting factors, divided by R'.

The photon lifetime 7, reads

" !
B IR, +;c;+ 80 Ry (19)
We have extracted from the sum in the denominator of equation (17) the term R) = —2R'z,
relating to the cavity. The cavity lifetime 7. is given in equation (2) for simple (lumped
circuit and Fabry-Pérot) cavity models.

When the a-factors vanish, there is full population inversion (n = 1), and in the so-
called ‘good-cavity’ limit (7. 3> t7), the right-hand side of equation (18) is simply 2/t2.
This is half the value applicable below threshold, with amplitude fluctuations contributing
negligibly to linewidth in that case, as is well known.

Equations (18) and (19) are our final general results. They are applied in the next
section, for illustration, to inhomogeneously broadened atomic lasers.

3. Atomic lasers

Let us consider two-level atoms and one-photon processes. Noise terms are ignored in the
present section. The admittance of a single atom with transition frequency w; submitted to
an optical field at frequency w reads

1 I —iog

A G = o) iy 1y
Yi(w,dy) = Gy + 1By deol_Hak i 01+oz§

(20)
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where
o = 2‘[0(0:} - wk] d;‘- = Nep — Rag (21)

Gy denotes the peak conductance of an absorbing atom and ro_I is the homogeneous spectral

width. The phase—amplitude coupling factor o expresses detuning. The absorbing- and

emitting-state populations are denoted by ny and ng, respectively. The real part G, of ¥

is negative when the population inversion dy is positive.
The emitted rate reads, according to equation (20), as

| — iCt‘k

| +of

where I = Go|V|* represents a normalized oscillation intensity.
For solid-state lasers and undepleted pumps, it is a good approximation to assume that
the pump rate absorbed by atoms is proportional to the absorbing-state population 714
Map
h==2=(1-dyl (23)
Ta
where I, = 1/27, is a normalized pump intensity.

Note that oscillation or pump ‘intensities’ are proportional to the modulus squared of
the respective fields. Since spontaneous decay is neglected, the absorbed pump rates J; are
equal to the emitted photon rates R;. But we are still free to vary the ratio I /I, by changing
the coupling of the pump light to the active atoms.

Solving for d; the relation Ji = R} with the help of equations (22) and (23) we obtain

1 14oef g '+
e 1+l +al  1+x}
where we have defined g = 1/,/1 + I/I,, x; = gog. Using equation (24), equation (22)
reads

Ri= R, +iR] = -V |V = a1 (22)

dp=

(24)

2 -1 3
Re=R,+iRy =14 "%
1+ x;
The a-factor is defined in equation (10), where Cy and E, follow from the definitions in
equation (8). The expression of Ry, is obtained from equation (22) and that of Py = Jiy
from equation (23), by taking the derivative with respect to d,. We obtain

B 1 s q°
T l=Jw/Ry 1+x2
Equations (24)—(26) give explicit expressions for the parameters R}, d;, n; and a; that enter
in the general expression in equations (18) and (19), in terms of x;.

In the next section we consider a particular distribution of atomic transition frequencies
wg, namely a Lorentzian one, selected for the sake of mathematical simplicity. For

some lasers, and particularly gas lasers, a Gaussian distribution would perhaps be more
appropriate. But no qualitative differences are expected for these two distributions.

(25)

ay =1—dj. (26)

4. Lorentzian transition-frequency distribution

The sums over k in equations (18) and (19) can be converted into integrals considering
the very large number of atoms involved, Let the number dN of atoms whose normalized
transition frequencies are between o; and o; + dev; be

dN:E dai.}
7 l4of

o < 2ti(ap — wi) < o + dog 27
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where the subscript ‘i" stands for ‘inhomogeneous’.  The parameter 7,7 is the
inhomogeneous distribution linewidth and «; the centre frequency. Integration (with
the lower limit extended to minus infinity because relatively narrow spectral widths are
considered) shows that N is the number of atoms.

Let us introduce the ratio 7 of the inhomogeneous-to-homogeneous spectral-width ratio
and the normalized parameter g,

r=1+2=2 o i1=g0-1) (28)

T Te

1

where 7,”' represents the inhomogeneous spectral width, and a detuning parameter & (not
to be confused with 8;) normalized by the inhomogeneous spectral width and normalized
parameter y,

é =2t (w — w;) y=qré = g2%(w — w). (29)
With the help of the normalized transition frequency distribution
(g—1)/n
wki) = —————
(x) E—1R+2 (30)
summations can be written as integrals according to the rule

o0

Y ) - Nf dx w(x —y) f(x). (31
-0

With these definitions the total real emitted photon rate is obtained from equation (25)
by contour integration

y iz [ wx—y) Nig® _82+)y?
The oscillation condition requires that the emitted rate be equal to the absorbed rate. Let
No be the number of atoms permitting oscillation at infinite pump intensity (corresponding
to full population inversion). Equating the expression in equation (32) with the same
expression with N changed to Ny and g = 1, g = r, we obtain
g+ g*r2s?
g2gr(l +6%)
This expression shows that g can be expressed as a function of our three basic parameters:
n.r and & as the solution of a third-degree equation.
The expression of «; in equation (14) is converted into the ratio of two integrals that
can be evaluated by contour integration
o 28y
g+ 1) +y¥eg—1)
In terms of the normalized parameters and after much rearranging (in particular, the
term ‘1 — &’ introduced in the denominator of the integrand by the n-factor is found to
cancel out, so that the only poles are those of a(x) and w(x — y)) the linewidth is given by

P 1+2s> g°—1_ [ (x = $)2(x* + ¢?)
4 ) (I — ¥ 4
7R o ) s—dw 1+ = + ps y j;m dx w(x —y) TETSE (35)

(32)

n=N/Ny = g=1+q(r-1). (33)

§ = qgo (34)

where y = (g + y?)/g.
The effective atomic lifetime 7 is obtained by derivation of R| and R} in equation (25)
with respect to w. Rearranging gives
2x(x —5)(x* 4+ ¢?)
(14 x2)3

* (s.o}

rc

—=]-yf drw(x —y)
To -0
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Equations (35) and (36) give the power-linewidth product in terms of the three basic
parameters n, r and 8. These equations can be written in closed form by contour integration,
but the resulting expressions would not be very helpful. We therefore leave them as integrals
to be evaluated numerically.

5. Special forms and numerical results

In the homogeneous limit r = 1, g = 1, the w(x) function reduces to the &(x) distribution
and equation (35) simplifies to

14821+n
2 z ™

This is the Haken-Lax result in equation (1) because in the present notation ¢p = § and
iz,

Next consider inhomogeneously broadened lasers withn = 1. Theng =1,g =r,a =0
and y = ré. The last term of equation (35) vanishes and therefore in the good-cavity limit

(Te + 1) —dw = (37
hw

2
P S (38)
1)

where
28
e

2
mT‘S r>1 sl 39)

This expression is essentially the one reported by Haken [1]. The approximations made
in that reference therefore appear to be essentially equivalent to assuming that N = Ny in
our notation. That is, it is assumed that the number of active atoms does not much exceed
the minimum required value.

In the strongly inhomogeneous limit, r — oo, but without detuning (§ = 0), we have
g = 1/n, and we obtain

2 2

rziéw: 1/n*+ 104 5n .

“hw 32

In the large-n limit, the inhomogeneous-to-homogeneous laser-linewidth ratio is thus 5n/8.
In the same limit, but with finite r-values, this ratio is [7]

(40)

inhomogeneous laser linewidth  inhomogeneous spectral width 1o

homogeneous laser linewidth ~ homogeneous spectral width ?e

The general solution is illustrated in figure 1 for r = 10 and n = 10 in the good-cavity
limit. In that example, the ratio 7 /1o is equal to 0.68 when § = 0 and 0.525 when § = 3.
When 6 = 0, r is large, but spontaneous decay is taken into account, with a time
constant 7; (i.e. S; = ne/7) the expression is (the detailed calculations will be omitted)
rziaw= c/n®+8+2/c+ (8c% = 3)n?/c? o
“hew 32
where ¢ = (15/1. + 1) /(1s/1a — 1) is supposed to be the same for all the atoms. As before,
7, represents the pump rate time constant, according to equation (23). This expression in
equation (41) reduces to equation (40) when spontaneous decay is neglected (¢ = 1). The
difference between equations (40) and (41) does not exceed 10% when z,/t, > S.
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6. Conclusion

We have presented a semiclassical theory of inhomogeneously broadened laser linewidth
which is simple, at least in principle. A closed-form expression for the linewidth
enhancement caused by inhomogeneous broadening has been reported in equation (17),
which is general, except for the assumption that the atoms are submitted to the same relative
field-intensity fluctuations. This assumption is valid for high-reflectivity mirrors.

According to this theory, the linewidth of cold solid-state lasers, for example, should
be significantly increased by inhomogeneous broadening when the number of ions N much
exceeds the threshold value Ny. If, for example, the laser is constructed with N = 10N,
inhomogeneous broadening enhances the power—linewidth product by a factor of 6. For
large N values, linewidth enhancement is limited to the inhomogeneous-to-homogeneous
spectral-width ratio. Further, we have found that for the particular pump model considered
(pump rates proportional to the lower-state populations) the linewidth does not depend on
pump fluctuations, even in the case of detuning between the cavity resonant frequency
and the centre of the atomic-transition frequency distribution. “The differences between
the conclusions reached here and in the recent paper by Khoury et al [4] are attributed to
different assumptions concerning the manner by which atoms are pumped.
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