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A method for simulating the propagaiion of coherent
optical beams with Gaussian irradiance patierns in free
space and through unaberrated lenses is described. This
method 1s based on the skew-ray representation of Gaussian
beams. The rotation in space of a collimated laser beam
with skew axis generates a Gaussian beam profile. The
phase of the optical field is given by the angular position
of the laser-beam center.

During the last decade, coherent optical beams
with Gaussian irradiance patterns have been
found to be of particular interest because the
irradiance patterns of such beams are preserved,
except for a sealing factor, as the beams propagate
in free space or through unaberrated lenses.!
Furthermore, most modern lasers generate optical
beams whose irradiance is almost (though not
quite) Gaussian.

The most obvious way of demonstrating the
laws of propagation of Gaussian beams is to make
the beam generated by a single mode He-Ne
laser visible with the help of a moving screen.
The beam parameters can be measured accurately
with a chopper and a detector.? This direct
approach, however, is not very satisfactory for
classroom demonstration for a number of reasons.
First of all, at visible wavelengths (A~0.6 pm), &
beam whose minimum eross-section can be seen at
a distance (e.g. a beam with a minimum radius of
6 mm) has a very small angular divergence, of the

order of 10~* rad. Therefore, no significant change
in beam radius occurs in free space over the
length of a classroom. Inversely, if the divergence
of the beam is made large by focusing the beam
to a small spot size with the help of a microscope
objective, the beam waist itself is too small to be
observed directly. A second difficulty is that the
irradiance patterns of beams generated by most
lasers are not quite Gaussian. The sharp edge
apertures incorporated in the cavity to prevent
oscillation on higher order transverse modes
significantly perturb the irradiance pattern of
the fundamental mode. In the ease of confocal
mirrors, for instance, the fundamental mode of
resonance is described by a generalized prolate
spheroidal wave function, which exhibits oscilla-
tions in the tail of the irradiance pattern.! Some
improvement could be obtained on that respect by
using spatial filtering techniques. These tech-
niques, however, are not easy to implement.
Finally, it should be noted that the phase of the
optical field can be measured only through
delicate interferometric or heterodyning tech-
niques.

We shall describe in this paper an easily imple-
mented method of simulating Gaussian beam
propagation. This method requires the use of a
He-Ne laser and a pair of rotating lenses. The
characteristics of the laser beam are unimportant
as long as the beam has small angular divergence
and does not depart too much from a geometrical
optics ray.

Let us first recall a few essential facts con-
cerning the propagation of two-dimensional
monochromatic Gaussian beams through isotropic
lossless square-law media. The refractive index
of such media varies with the transverse (x) and
axial (2') coordinates according to a law of the
form

n(x, ) =no(e') —dne (') (¢')a?, (1)
where ne(z'), Q2(2') are arbitrary real functions
of 2. It is convenient to introduce a reduced axial
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coordinate z, defined by
= f no(2')d2/,
0

and a reduced field

Yz, 2)=no(2')E (z,2')
o [ ey
Xexp( zfoﬂo_«?}z) (2)

where k=w/c denotes the free-space propagation
constant and K (z, z’) the magnitude of the elec-
tric field, assumed linearly polarized. An
exp (—iwt) time dependence of E is understood.
Note that the beam irradiance is proportional to
ol E* =yop*. In the special case where the on-axis
refractive index mg is unity, we have z'=z and
E =y exp (ikz).

Within the approximation of Gauss, the reduced
field of a Gaussian beam at a point «, z, is given by
the simple expression®

¥(z,2) =q(z)7" exp[i(k/2)g (2)g (2)'2*], (3)

where the upper dot denotes differentiation with
respect to z, and g(z) is a solution of the paraxial
ray equation

g (2)+2*(2)g(2) =0. 4)

A lens with focal length f is equivalent to a thin
section of square-law medium with focusing
constant @* and thickness Az such that Q*Az=j",
as one finds by equating the transverse variations
in optical thickness of the lens and square-law
medium. Thus, Eq. (3) is applicable to arbitrary
sequences of converging (22>0) or diverging
(©°<0) lenses, as well as to lens-like media. In
free space we have, of course, 22=0.

When ¢(z) is a real solution of Eq. (4), ¢(z, z)
represents the field of a ray pencil. The physical
significance of Eq. (3) is then clear: the ex-
ponential term expresses, within the paraxial
approximation, the departure of the (spherical)
wavefront from the tangent plane. The prefactor
¢ (z)7", on the other hand, is a consequence of the
law of conservation of power. Equation (3)
describes Gaussian beams when complex initial
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values are given to g(z). @* being real for lossless
media, both the real and imaginary parts ¢, (z)
and g:(2) of ¢(2) obey Eq. (4) and behave like
ordinary rays. The complex ray ¢ (z) can therefore
be represented by a real skew ray (i.e., a ray that
does not interseet the z axis) in the three-dimen-
sional space q,, g¢;, 2.

On axis, the reduced field is [setting =0 in
Eq. (3)],

¥(0,2) =q(z)" (5)

Thus, the phase 8(z) of the on-axis reduced field
is equal to minus one-half the phase of ¢ (z):

0(2) = —7% tan~'[q: (2) /g, (2) ]. (6)

This phase term is important mainly because it
defines the resonance frequencies of open reso-
nators. In the skew-ray representation of Gaussian
beams, the phase of ¢(z) is the angle that the
skew ray makes with the g, axis at plane z. The
phase of the optical field can therefore be given a
simple geometric representation.

It is not difficult to show that if the complex ray
¢ (z) is normalized by the (z-invariant) condition

4-(2)4: (2) —q: (2)¢: (2) =k, (7)

the beam halfwidth £(z), defined as the distance
from axis where the beam irradiance yy* has
dropped by a factor e=2.718. . ., is equal to the
modulus of ¢(z); we have

E@)=[q(2)g*(z) ]
= {[g-(2) P+Lq:(2) P}~ (8)

The beam halfwidth is equal, at any plane z,
to the distanee between the skew ray and the 2z
axis. By letting the skew ray rotate about the z
axis, the beam profile is therefore generated. In
particular, in free space the skew ray is a straight
line whose rotation generates an hyperboloid of
revolution.

For Gaussian beams with rotational symmetry,
the reduced field is, from Eq. (3),

¥ (r, z) =y (z, z)\"’(y: z)
=q ()7 exp[¢(k/2)4(2)g ()~ *], (9)

where r*=2*+* The beam irradiance pattern in
a meridional plane is therefore the same as before.
The phase of the on-axis reduced field, however,
varies twice as fast as a function of 2.

Note that if the lens system under test were mis-
aligned, the simulated beam would remain an
exact scaling of the real beam. In both cases the
beam center follows a real ray trajectory.?

The expression given in Eq. (3) for the field of a
Gaussian beam is easily generalized to the case of
nonorthogonal astigmatic optical systems and to
the case of anisotropic media, provided the ray
optics Hamiltonian remains at most quadratic
in its arguments (approximation of Gauss). To
obtain these generalizations we essentially have to
replace ¢ by a 2 X2 matrix Q which formally obeys
the ray equation, and ¢ by the quantity canoni-
cally conjugate to ¢ (see Ref. 4). The skew ray
representation, however, becomes complicated in
those cases. We shall therefore restriet ourselves to
two-dimensional Gaussian beams and to Gaussian
beams with rotational symmetry.

TRay.
ENVELOPE G

FiG. 1. Schematic diagram of demonstration system
showing, on the left, a rotating device incorporating two
ofi-set lenses. The skew laser beam axis simulates Gaussian
beam propagation through a test lens (shown on the
right).

Let us now indicate how a rotating skew ray can
be generated in practice and how the experiment
can be implemented. Consider two lenses with
focal length 1 separated by a distance 2f. Let their
common axis be off-set by a distance d from the z
axis, and the system (shown on the left of Iig, 1)
be made to rotate about the z axis at some con-
venient speed, perhaps 120 rpm. If a narrow laser
beam (which represents a ray in this demonstra-
tion) enters in the lens system along the rotation
axis, the outgoing rav remains parallel to its
original direction while rotating with a radius 2d.
Now let the separation between the lenses be
f+s, s>7, instead of 2. As the lens system rotates,
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Fig. 2. The wavelength A, and angular divergence p of the
simulated Gaussian beam are obtained from the geometrical
construction shown on this figure. The minimum beam
halfwidth is related to p and X, by &o=N./2xp; s, f, d, and ¢
are the lens system parameters shown in Fig. 1.

i

1

the outgoing ray, which now crosses the z axis,
generates a cone which can be viewed as a con-
verging ray pencil. In order to simulate diffraction
effects some skewness need be introduced in the
outgoing ray. This can be done by rotating the
axis of the second lens with respect to the first
lens by an angle ¢, as shown in Fig. 1.

The minimum halfwidth & of the simulated
beam, its far-field angular divergence

p= lim (&/2),

gt

and its wavelength X\, =2rpé, are easily obtained
from the laws of Gaussian optics. These quantities
are found to be related to the parameters s and ¢
defining the relative position of the two lenses by
the geometrical construction shown in Fig. 2.

We find, using this construction, that if f=10
em, s=13 em, d=1 em, and ¢ =30°, the diffraction
effects are the same as if the wavelength were
equal to 7.3 mm (more than ten thousand times
the actual wavelength of the laser) corresponding
to a frequency of 40 GHz. The beam waist radius

Fia. 3. Photograph of the experiment. The simulated beam
is made to converge with the help of a lens. It subsequently
diverges as a result of the (simulated) difiraction effects,
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is £=18 mm and the angular divergence is
p=3.8°

Figure 3 shows a photograph of the experiment.
The rotating skew ray has been made visible by
slowly moving a screen along the system axis
during the time of exposure of the photograph.
For the set of parameters chosen in this experi-
ment, the simulated Gaussian beam diverges at
the exit of the rotating device. The beam is subse-
quently refocused with the help of a test lens,
reaches its waist about 1 m away from the test
lens, and diverges again. Almost any beam walist
radius and wavelength can be simulated by
changing the axial and azimuthal position of the
second lens with respect to the first.

The device that we have described ean also be
used in courses of quantum mechanics to demon-
strate the spreading in time of minimum un-

certainty wave packets. The analogy existing
between nonrelativistic quantum mechanics and
scalar optics is well known (see, for instance,
Ref. 5) and need not be insisted upon here.
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