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"From a modern view-point, nature possesses two levels: At the lower level is the
electromagnetic field. At the upper level are material bodies, energy and forces. Only the
upper level is accessible to observation" Freeman Dyson: From Eros to Gaia, Pantheon
Books 1992 (Chap. 9: Comprehend Maxwell).

The classical theory of laser noise that we present is well in line
with the above quotation. The basic concept is that laser noise is caused by
atomic jumps between lower and upper levels, and that atoms subjected to
classically-prescribed optical fields are independent of one-another.
Electron jumps from one level to another are considered measurable,
while the electromagnetic field is a complex quantity (analytic signal) that
cannot be directly measured. Optical waves may anticipate emitting-atom
fluctuations. Because this theory unlike previous semiclassical theories
enforces energy conservation "non-classical”" states of light (squeezed
states) are accurately described. From our view-point photocurrents
exactly reflect light fluctuations. No "detector shot-noise” should be
considered. The phasor theory that attributes noise to the field
spontaneously emitted in the oscillating mode by excited-state atoms, in
contradistinction, cannot be understood consistently in semiclassical terms
and is valid only for simple laser-oscillator models [1].

Note that the expression "photon number" (m) is employed in this
paper as an abreviation for "electromagnetic energy divided by Am"

where 7 denotes the Planck constant divided by 2w, and ® the optical

angular frequency, only narrow-band processes being considered.
Similarly, "photon rate" refers to electromagnetic power divided by Aw.

The photon rate Q absorbed by the detector and the photon rate R from
excited-state atoms are complex quantities (active and reactive powers).
(Real and imaginary parts of complex quantities will be denoted by
primes and double primes, respectively). Only spectral densities are
considered. General probability laws presumably require quantization of
the optical field (positive P-distribution).

Our classical theory shows that high-power laser-oscillators with
nonfluctuating pumps generate amplitude-squeezed states of light. We will
show in detail how previous quantum-theory results [2] are recovered.
Linewidth formulas applicable to lumped circuits are also discussed. For
one-dimensional configurations the linewidth is inversely proportional to
the modulus square of a complex round-trip transit time t. The



significance of this complex transit time can be discussed on the basis of
variational formulas derived either from the Tellegen theorem or
Maxwell equations.

Accidental fluctuations (due, e.g., to atmospheric propagation), 1/f
noise and slow thermal fluctuations are not considered. A single-mode
oscillation is considered.

We denote by J the pump rate (number of atoms in the emitting
state or electrons injected per unit time). Below threshold (J<Jh, where
Jth denotes the threshold value) the laser output consists of linearly
amplified spontaneous emission. It is similar to frequency-filtered
thermal light. The light distribution in the Re(E)-Im(E) plane (where E
denotes the optical field) is gaussian and thus light intensity is
exponentially distributed. The photo-electron statistics is superpoissonian
(bunching).

When pumping is strong enough (J>Js,) the gain equals the loss and
a classical stable oscillation can be sustained, which is only weakly
perturbed by noise sources. The phase diffuses in the course of time with
a coefficient essentially equal to the laser linewidth. If the pump
fluctuations are at the shot-noise level (independent atom-injection times)
the laser output may resemble a coherent state, with Poisson-distributed
photons. If the pump does not fluctuate the laser output may be amplitude
squeezed and exhibit subpoissonian photon statistics.

Nonfluctuating pumps can be realized in a number of ways: a) A
fixed number of atoms may be excited by a pulse of light of appropriate
duration and intensity. The subsequent atomic decay will, ideally, always
give the same number of photons. b) It is possible to fabricate electron
turnstiles that deliver exactly one electron every microsecond (for
example). This regular electron flow can be employed as a quiet pump. c)
Yamamoto made in 1986 the observation that the current generated by a
battery and a (preferably cold) resistor is essentially nonfluctuating [2].
At room-temperature with a battery voltage of 10 volts, the spectral
density of the electrical current fluctuations normalized to the shot-noise
level is only 0.0025 according to the Nyquist formula. Usually the
dynamic impedance of laser diodes of the order of 1(2 is negligible with
respect to the external resistance, of the order of 1 kQ. It is therefore in
principle very easy to pump electrically a semiconductor laser noiselessly.
Internal noise sources, however, remain.
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Figure 1: measurement of intensity-noise (double-sided) spectral density. J denotes the
pump rate, Q the photon rate emitted by the laser and D=Q the photo-electron rate. The
filter centered at frequency f, has a 1 Hz bandwidth.

Figure 1 shows a typical arrangement for measuring the amplitude
noise spectral density. The laser output is entirely collected by a detector
that we assume ideal (every incident photon being converted into an
electron). The photo-electron rate D(t) is analyzed with a spectrum
analyser, schematically represented by a 1-Hz bandwidth filter centered at
a frequency f, that can be scanned. After time-integration, twice the
(double-sided) amplitude-noise spectral density is obtained as a function
of baseband frequency f, (abbreviated to f in the following). From a
mathematical standpoint, the spectral density is best defined as the Fourier
transform of <AD(t)AD(0)>, where the signs <.> denote an ensemble
average, and AD=D-<D> is a real, zero-mean, stationary, ergodic
process.
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Figure 2: Squeezed-state generation and observation. The laser oscillator (white triangle)
is driven by a pump rate J. It generates a photon rate Q, converted into a photocurrent
D=Q by the detector (black triangle). The laser oscillator comprises a negative
conductance -Gg and an L-C resonator. n denotes the number of emitting atoms (or the
number of electrons in the conduction band for semiconductors) and m the photon
number. The detector conductance G, is equal to the steady-state value of Ge.

Figure 2 represents the laser diode driven at pump rate J. The
output photon rate Q equals the detected rate D. The laser oscillator is
split into a tuned L-C circuit containing m photons, and a negative
conductance -Ge containing n atoms (or electrons). It is essential to
consider also the absorber of radiation, i.e., the detector in the present
configuration. The separation between the laser and the detector turns out
to be irrelevant. If part of the laser radiation goes into free-space, light is
supposed to be absorbed at infinity. In any event the aborber is cold and
frequency-insensitive. The number ny of atoms in the absorber is
mentioned in the figure only for the sake of completeness. It is considered
constant and needs not be considered in the following.
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Figure 3: This figure illustrates the fact that regular pumps entail subpoissonian
photocurrents. Note that long measurement time-intervals correspond to baseband
frequencies f small compared with the so-called "cold-cavity linewidth". This conclusion
holds irrespectively of the detailed internal mechanisms (e.g., spectral-hole burning) as
long as negligible internal loss occurs.

Before going into detailed calculations, let us explain with a
picturesque model why nonfluctuating pumps entail nonfluctuating
photoelectrons. Figure 3 shows people entering, one every second, in a
small-sized room. An hour later exactly 3 600 people have entered.
Almost exactly 3 600 people also have left the room because not many
people can stay in the room. We can be pretty sure that this number

deviates from the mean by much less than the square-root of 3 600,
namely 60. The output rate thus is "subpoissonian". This would be even
more so if a longer measuring time such as one day were considered.
Going back to the physical situation we can assert that if the laser pump
rate is nonfluctuating the spectral density of the outgoing electrons
vanishes at low frequency (corresponding to long measuring times). This
simple picture applies only if no electron is lost through the process of
spontaneous atomic or carrier recombination, and no photon is lost by
dissipation or scattering. Under these ideal conditions, incomplete
population inversion or gain compression are irrelevant. The spectral
density increases as a function of baseband frequency f and reaches the
shot-noise level at very large frequencies.
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The atoms jump at times t1 t2 ... These times are independent

because the atoms cannot “communicate”, so to speak: Their
wavefunctions do not overlap, and the optical field is prescribed.

Figure 4: A number of atoms initially in the absorbing state are submitted to the same
prescribed optical field, proportional to the voltage V. They undergo quantum jumps at

independent times. As a consequence, the induced current I consists of a sequence of §-

functions at Poisson-distributed times. The same principle applies to atoms in the emitting
state, and to detuned atoms.

The fundamental noise sources can be derived from a simple
intuitive principle: atoms submitted to a classical prescribed optical field
are independent. This is so because the atoms cannot communicate with



one another (so-to-speak) neither directly because the wave functions do
not overlap, nor through induced field fluctuations. When the number of
atoms is large this implies that the quantum jumps are Poisson distributed,
and for the one-photon processes considered the intrinsic rate fluctuation
q(t) is at the shot-noise level, that is Sg=Q, where Q denotes the average
absorbed rate, the signs <> being omitted when no confusion may arise.
The same principle applies to emitters. However, for high-power
oscillators it suffices to consider the absorber. We have

Q=7 +4,  $q=0 | (1)

where the first term is the deterministic contribution. In terms of the
circuit element shown in Fig. 2 we have m=CV2, V being the normalized
voltage across the circuit, and 1p=C/G, G=G,~Ge. At high power the
number of atoms n is negligible because they quickly decay as a result of
stimulated emission. Therefore, the atom number rate equation simplifies
to

fin_tzJ(t)-R(t)z():)AR=AJ=0 2)

if the pump is nonfluctuating.
Accordingly, the rate equation for the photon number m simplifies

M - R® - Q) = <R>- Q) 3)

Considering small deviations from the steady-state denoted by A, and
going to the baseband angular frequency Q=2xnf [with an exp(jQt) time-
dependence implied], Egs.(3) and (1) reads:

AQ = -jQ Am = jQ1p (q - AQ), Sq=Q 4)

This equation shows that AQ is proportional to the intrinsic fluctuation q.
Accordingly, the spectral density of AQ reads

S F
o =i F=@m) (5)

X

n

This result verifies that X vanishes at zero baseband frequency and
reaches the shot-noise level (X=1) at high frequencies.

At moderate power the atom number n cannot be neglected in
comparison to the photon number m. The first expressions in Egs.(1)-(3)
remain applicable. We now need the detailed expression of the photon
rate R from emitting atoms

R=Anm+r, S;=R=0Q (6)

where A is a constant. The intrinsic fluctuation r is independent of q but
has the same statistics. The deterministic term Anm is (as was the case for
Q) proportional to the photon number m, but it also depends on the atom
number n. For simplicity R is assumed to be proportional to n. The
normalized amplitude-noise spectral density is shown as the upper curve
in Fig.5, for n=m. At lower powers (n>>m) the relaxation peak is more
pronounced.
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Figure 5: Spectral density of intensity noise normalized to the shot-noise level, X=Sx@/Q, as a function
of the baseband frequency normalized by the cold-cavity linewidth, FE(Q’rp)z. The parameter a=n/m=0 at

very high power when n<<m. In that case one needs only the expression of the absorbed rate Q. The
result at moderate powers (a=1 or n=m) exhibits a relaxation.

From our viewpoint the origin of noise is stimulated rather than
spontaneous emission. We have assumed above that the laser oscillator
operates much above threshold, so that the rate S of spontaneous decay is
negligible in comparison with the stimulated decay rate: S<<R=Q. Just
above threshold (S>Q) spontaneous decay adds noise. But whether this



decay is radiative and part of it goes into the oscillating mode or not is
not relevant.

We have so-far considered only amplitude noise. To treat phase
noise one should consider that Q=Q'+iQ" is complex, as discussed earlier
(Q' representing active power and Q" reactive power). Here, "i" is the
symbol for imaginary numbers with an exp(-imt) time dependence
implied. In the general situation, a bicomplex (i,j) notation is convenient.
It consists in the replacement of the (Laplace transform) p=-iw in the
expression of a causal response Y(p) by pj+p2 where p1=-im and p2=j<Q.
Y(p1+p2) can be expressed as a sum of four terms proportional
respectively to 1, p1, p2 and p1p2. This bicomplex notation is not
employed here.
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Figure 6: Equivallent circuit for absorbing atoms (series representation on the left, parallel representation
on the right). The condition that atoms submitted to prescribed classical fields are independent requires that
the complex noise sources (voltage, current or rate) have the spectral densities shown on the figure. The
schematic on the lower right explains the principle of spontaneous emission.
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The intrinsic noise q=q'+iq" is also complex with q' and q"
uncorrelated and having both spectral densities equal to Q'. This follows
from the intuitive concept explained earlier, namely that (possibly
detuned) atoms submitted to prescribed optical fields must be
independent. Two alternative representations are given in Fig.(6). On the
left, a series circuit model is shown with a white voltage noise source

v(t). In the following we use the parallel circuit representation on the
right of the figure, with a complex current source c(t).

If we consider absorbing atoms in free-space (i.e. surrounded by
absorbers), the rates radiated by noise sources relating to the absorbing
atoms and by noise sources relating to surrounding atoms cancel out so
that no spontaneous absorption occurs, as one expects. But for emitting
atoms the two contributions add up (see Fig.6). Our formalism thus
predicts the phenomenon of spontaneous emission.
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Figure 7: Direct measurement of the laser linewidth with the help of a scanned narrow optical filter. The

laser linewidth 8w is full width at half power.
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Figure 8: Alternative method of measuring the laser linewidth, applicable above threshold when the
amplitude fluctuations contribute negligibly. The linewidth 8 is the spectral density of the instantaneous
frequency deviation Aw(t) in the small baseband-frequency limit. The later is measured with the help of a
detuned optical filter acting as a frequency-to-amplitude convertor.

Fig.7 exhibits a direct method of linewidth measurement. Figure 8
is applicable above threshold, when the amplitude fluctuations contribute
negligibly to linewidth. One first measures the spectral density of the
instantaneous optical frequency fluctuation Aw(t). For gaussian processes
the linewidth dw is the low-frequency limit of that spectral density.




It is straighforward to recover from the principles just explained
detuned-atom linewidth formulas first derived by Lax from quantum
theory in 1966 [3]

) L + o2 (below threshold)
Qow = (Te + Tp)2 + (Te - Tp)2 02
1 + o2
Q=3 G # )2 (above threshold)

where the detuning (or phase-amplitude coupling factor) 0=2Te(We-0o),
where ®¢ is the actual oscillation frequency. The polarization relaxation
time Te is defined as T4 in Fig.6. The "photon lifetime" Tp is equal to
C/Ga.

The above-threshold linewidth formula can be generalized to the
case of any number of atomic species. For a cold nondispersive absorber,
complete population inversion of the emitting elements, and poissonian
pumps we obtain
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Figure 9: Circuit representation of free space. Each perfectly conducting magnetic (electric) ring is
intertwined to four perfectly conducting electric (magnetic) rings. It can be seen by inspection that the
Maxwell equations are obeyed. An atom (with electric-dipole allowed transition) is shown in the middle of
the magnetic loop generating the Ey field.
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Figure 10: Dielectric slab of refractive index n (whose imaginary part expresses gain) and thickness 2d,
immersed in a medium of refractive index n,. Perfect absorbers are supposed to be located at a large
distance from the slab. Propagation may be wiewed in two ways. a)with k=0, the figure represents a
Fabry-Pérot resonator with the optical power leaking along the z direction at the index discontinuities,
z=td. b) with large kx values, propagation essentially occurs along the x-axis, and the wave decays
exponentially in the outer medium. For small d-values (weak guidance) the laser linewidth is enhanced by
a Petermann K-like factor.

The most general situation is that of an arbitrary circuit involving
emitters and absorbers. Indeed a continuous medium admits a circuit
representation as shown in Fig.9 for free space. An important
configuration is the dielectric slab shown in Fig.10.

Below threshold, a general formula for bianisotropic media has
been given that involves only the resonating field [1]. For example, for a
ring-type resonator involving in sequence a gain Gip, a reflection
R1=1/L1, a gain G2 and a reflection Rp=1/L7, the result reads, with T the
complex round-trip time

12 Q 8w = (1+R1R2)(G1+G2+L1+L)) - RiR2(G1+G2)(L1+L2) - 4

Above threshold only special configurations have been treated
analytically. Numerical methods are in general required.

We conclude by saying that the popular "phasor” method that
attributes noise to the power spontaneously emitted in the oscillating
mode is accurate only for the simplest laser oscillator models. Unlike the
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classical theory that I presented here, the phasor model is unable to
recover, e.g. detuned-atom linewidth formulas derived from quantum

theory.
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