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The classical theory of laser noise treats light in a classical manner, yet agrees with
quantum theory for large particle numbers. The basic concept is that laser noise is
caused by atomic jumps between lower and upper levels, and that atoms subjected to
classically-prescribed optical fields are independent. The treatment of amplitude noise
of single-mode cavities containing resconant three-level atoms is applicable to
semiconductor lasers at moderate power. At high power one must account for the
dependence of the gain on optical power and for state-occupancy fluctuations. The
phasor theory that attributes noise to the beat between the oscillating field and the field
spontaneously emitted in the mode by excited-state atoms cannot be understood
consistently in semiclassical terms.

f. Introduction

The classical theory of laser-light amplitude and phase noise was proposed by this author in
1988' [1-6]. According to this theory, fluctuations result from atomic jumps between lower
and upper levels, and atoms subjected to prescribed optical fields are independent. Light is
described in a classical manner, i.c. by means of commuting functions of time. Accordingly,
the words ‘photon number’ and ‘photon rate’ are employed in this paper only as short-hand
for electromagnetic energy and electromagnetic power, respectively, divided by /iy, where
h =~ 6.6 x 107 Js denotes Planck’s constant, and v, the mean oscillation frequency. The
classical theory of noise agrees exactly with quantum theory for large particle numbers,
even when the so-called ‘nonclassical’ states of light are generated.

Only stationary amplitude noise is treated to meet space limitations. It is permissible to
ignore phase fluctuations when both the emitting and absorbing elements are frequency-
insensitive, e.g. for index-guided laser diodes operating near peak-gain in the absence of
spurious optical reflections. Expressions are derived for familiar quantities such as the relative
intensity noise (RIN), with special attention given to nonfluctuating (or ‘quiet’) pumps. The

"This early paper, though correct for the situation considered, contains misleading statements, corrected in [2]. Firstly, a
doubled noise source intensity is attributed to the emitter and no noise to the absorber. This unsymmetrical solution is
accurate only in the linear regime. Secondly, the implication that the field factorizes into the product of a function of
space and a function of time is in general erroneous. The independent noise sources distort the field distribution.
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results apply to resonant three-level atoms, but a cursory discussion of laser diodes is also
offered. It is recalled in the appendix why spectral densities cannot be negative.

Let us first explain what is meant by ‘optical detection’. When a detector such as a p-i-n
junction is subjected to light, e.g. laserlight or starlight, the detector current consists of a series
of pulses whose areas are equal to the electron charge, occurring at times ¢, k = 1.2, ... . If the
optical power is, say, 1 mW and the free-space wavelength is 1.55 ym, the average photon rate
is 8 x 10" s'. Such high rates can be recorded only with a mosaic of small-area detectors,
because optical attenuators aimed at reducing the average rate to practical values would
‘kill” photons randomly and spoil the light-source statistics. The full information is given by
the probability p(f;,¢5,..., t,) that photoelectron events occur at those times. When the photo-
electron occurrence times are independent of one another, the distribution is called Poissonian,
and the probability factorizes as p(t,) p(¢2) -+ p(t,).

In most practical cases the detector response time, of the order of 10 ps, and thermal noise
prevent us from identifying individual photoelectrons. The detector photocurrent then has
the appearance of a current (/) of the order of 1 mA, plus some small zero-mean fluctuation
Ai(t). A crude but often sufficient way of characterizing Ai(t) is through its covariance, the
time-averaged product of Ai(s) and Ai(z+ 7). Alternatively, a radiofrequency analyser
provides the photocurrent spectrum, which is the Fourier transform of the covariance. The
detector-load thermal noise as well as subsequent electronic amplifier noise can be subtracted
out, and arbitrarily small noise levels can be measured, in principle, by increasing the integra-
tion time. The current from an ideal detector exactly reflects the incident light fluctuations. No
‘detector shot-noise’ should be considered. It will be assumed, as usual, that nonideal detectors
are equivalent to ideal detectors preceded by some optical loss.

In place of the detected electrical current, it is convenient to consider the photoelectron rate
Q=i/e=(0Q)+ AQ. The ‘instantaneous’ rate Q may be defined as the reciprocal of the
appropriately smoothed delay between successive photoelectrons. For a Poissonian distribu-
tion the (double-sided) spectral density of AQ is equal to the average rate (Q). But whe
the photoelectron occurrence times are evenly spaced, AQ vanishes.

Laser sources are characterized by the optical cavity employed, and the way the enclosed
atoms are raised to the upper state by a process called ‘pumping’, which may be random or
regular. Key theories describing above-threshold amplitude fluctuations are now considered.
Background information on lasers may be found in Siegman’s comprehensive book [7]. An
account of maser and laser history, and discussions of the concept of photon and semiclassical
theories can be found in [8].

1938: Classical oscillator theory (KT > hv)
Johnson discovered experimentally in 1928 that electrical resistances generate noise. This
noise, observed with the help of large-gain amplifiers, can be represented by a white-voltage
source of spectral density 2kTR, where & denotes Boltzmann’s constant and T the absolute
temperature of the resistance R. This experimental result was soon explained by Nyquist [9].
Generalization of the Johnson—Nyquist result to the quantum regime, with or without electro-
magnetic zero-point energy, is not free of difficulties, as recently discussed by Gardiner [10].
Classical oscillators may employ a tuned circuit connected between the cathode and the grid
of a triode, oscillation being sustained with the help of some feedback from the plate current.
Nyquist’s noise is the fundamental source of noise of classical oscillators. Building on previous
work by Van der Pol, Bernstein [11] set up in 1938 a Langevin equation for oscillators of that
kind, and solved the associated Fokker—Planck equation.
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In some circumstances fluctuations due to the corpuscular nature of electricity add noise.
This noise in fact dominates Nyquist’s noise when the tuned circuit is connected to the triode
plate, and cathode emission is limited by temperature rather than by space-charge effects. To
avoid confusion, let us point out that this shot-noise fluctuation acts directly at the oscillation
frequency. Injected-current fluctuations discussed later in connection with lasers correspond
instead to rather slow changes in time of a parameter, i.e. the pump power. Oscillator noise
differs vastly in nature from the output of narrowband linear amplifiers. For a recent treatment
*f practical transistor oscillators, see, for example, Braun and Lindenmeier [11].

From a fundamental (i.e. quantum) point of view, classical oscillators should be viewed as
multiphotonic devices. Indeed, in a typical classical oscillator such as a reflex klystron, the
energy lost by each electron, in the eV range, is considerably larger than the microwave
photon energy, which is in the meV range.

1967: Quantum theory of laser noise with random pumping

Early measurements of laser noise have been reported by Freed and Haus, and Armstrong and
Smith [12]. Glauber [13] was the first to point out that laser oscillators are very much like clas-
sical oscillators in the sense that amplitude fluctuations are small compared with the mean
amplitude: photon-number variance is of the order of the mean while, for frequency-filtered
thermal light, the variance is the squared mean.

Quantum electrodynamics (QED) is in principle capable of predicting the probability that
some outcome will be observed at time ¢ if the source preparation at ¢ = 0 is specified. But
the full quantum theory is so difficult that exact solutions are known, essentially, only for a
single atom and a single-mode cavity. When many atoms are present simultaneously, coarse-
graining approximations must be introduced. Quantum theories of laser noise were given in
1967 by a number of theorists: McCumber, Haken, Lamb, Scully, Lax, and others. They
obtained the statistics of the photon number for plausible laser-oscillator models, including
aturation. This theoretical work, and application to semiconductor lasers, was reviewed in
an excellent paper by Haug [14]. The nature of laser noise is described by Morgan and
Adams [15] in these terms: ‘A fundamental noise source in the output of continuous-wave
lasers is the quantum shot-noise due to the random electron transitions which generate laser
emission.” We adhere to this viewpoint, stimulated absorption and emission both being consid-
ered as sources of noise.

1984: Quiet-pump theory

The earlier theories implicitly assumed Poissonian pumping because this was the practical
situation at the time. It was implicit in these works that detected photoelectron fluctuations
reflect those of the intracavity field. This, however, is in general not the case.

Golubev and Sokolov [16] were the first to make the observation (rather obvious in retro-
spect) that if the pump does not fluctuate, and the laser-detector system is ideal, the detected
current should not fluctuate at low frequencies. A similar theory was proposed independently
in 1986 by Yamamoto and others [17], who furthermore pointed out that when a laser diode
is driven by a battery in series with a (preferably cold) resistance much larger than the diode
dynamic resistance, the pump (i.e. the driving current) is nonfluctuating. This conclusion
follows from Nyquist’s theorem, which applies not only to thermodynamic equilibrium, but
also when a steady electrical current flows, as long as Ohm’s law is applicable [18]. To
avoid confusion, let us recall that currents flowing through p-n junctions are known to fluctuate
at the shot-noise level when the diode is velrage driven. Obviously the current fluctuations of
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current-driven diodes are determined by the driver, not by the diode. More recent reviews of
quantum theories considering reduced pump fluctuations are found in [19]. Experimental
results demonstrating sub-Poissonian outgoing-photon statistics (by up to a factor of 10) are
listed in [20].

1987: Classical theory of laser noise
Let us first explain in classical terms why nonfluctuating pumps entail nonfluctuating photon
flows under ideal conditions at low frequencies, with a picturesque model: Consider a small:

sized room with an entrance door and an exit door, and assume that one person enters every -

second. An hour later, obviously, 3600 persons have entered. Almost exactly 3600 persons
have also left the room, because not many people can stay in the room. The exit rate, though
not strictly constant, is ‘sub-Poissonian’. This is even more so if longer time periods are con-
sidered, e.g. one day. This picture applies to electrons injected into a laser diode and extracted
from the detector. In the real physical situation one must consider storage of both the electrons
and the photons. The closed-room model implies of course that no electrons are lost through
spontaneous-recombination processes and that no photons are lost as a result of optical
losses, either internally or during propagation from the laser to the detector.

It is interesting to consider also the behaviour of the number of photons m in the optical
cavity, following the discussions in [16] and [4]. Since the photon-absorption process is intrin-
sically random, it may happen that the absorbed photon rate exceeds (say) the average value
over some period of time. This causes m to decrease after a while, assuming for simplicity
that the photon-generation rate does not fluctuate. Accordingly, the deterministic term in the
outgoing photon rate, which is proportional to m, is reduced and the excess rate initially
assumed becomes smoothed out. Complete quieting is possible.

Theories such as the one given in this paper that do not quantize the optical ficld are usually
labelled ‘semiclassical’. However, earlier semiclassical theories do not enforce energy conser-
vation and are unable to describe ‘nonclassical” states of light (see Mandel [8]).

A classical theory of amplitude noise was given by Katanaev and Troshin [21] in 1987, on
the basis of Golubev and Sokolov’s quantum results. Their theory is accurate. However, it gives
no hint concerning a possible treatment of phase noise. Yet, in general, phase and amplitude
fluctuations cannot be treated separately. The handling of noise sources in [21] is compli-
cated, particularly in relation to linear optical losses.

Initially [1] this author was mostly concerned with phase noise, and unaware of related
quantum-theory results. By enforcing energy conservation, the earlier findings in [16] concern-
ing amplitude-noise squeezing were, however, recovered in a classical manner. In [1-3] the
intrinsic noise is attributed to the zero-point fluctuation of the optical field, which is a conse-
quence of optical-field quantization. Our present view is that field quantization is unnecessary
for the kind of problem considered. It suffices to observe that atoms (with nonoverlapping
wavefunctions) submitted to prescribed classical fields are independent. These concepts lead
to the basic formula in Equation 3. This equation tells us that the absorbed photon rate Q is
the sum of a deterministic term m/7,, proportional to the photon number m, and a fundamental
fluctuation q, which is at the shot-noise level for small amplitude fluctuations, i.e. the spectral
density of q is equal to the average rate (Q). A similar result applies to emitters, except that the
deterministic term may then depend also on the carrier number. Emitters and absorbers are
treated on the same footing, as done earlier in Lax’s semiclassical paper [22].

The classical theory of noise that we present appears to be the limit of linearized symmetri-
cally-ordered quantum theories. Quantum theories employing Glauber’s P-distribution may not
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be more accurate since the probability distributions obtained are negative, and therefore
unphysical, for m-values that depart significantly from the mean value (m) [19].

We restrict ourselves to above-threshold lasers. Below-threshold (linear) operation is
straightforward. There is a narrow range near threshold where difficulties arise but they do
not seem to be of a fundamental nature.

Let us now consider other proposals for explaining laser noise in classical terms. Important
textbooks [23] have popularized a ‘phasor’ picture of phase and amplitude noise. Laser noise
vould be caused by the addition to the strong classical field of a randomly-phased field, attrib-

—~ated to spontaneous emission, the ‘photon events’ occurring at an average rate equal to the

population inversion factor divided by the lifetime of the photon in the cold cavity. The
laser dynamics reacts against amplitude fluctuations while the phase diffuses freely. This
phasor picture has been formalized by Henry in a series of papers [24] that provide many
insights, in particular in relation to laser-diode linewidth enhancement. But in our opinion
the phasor picture is inconsistent, see Section 7.

A classical theory of parametric-oscillator noise by Reynaud and others (for a recent formu-
lation see [25]) exhibits exact agreement with quantum results. Section 3 of [25], dealing with
conventional lasers, is, however, inaccurate. As Nilsson’s and others recognize (see chapter 3
of the book in [24]), quiet pumps cannot be modelled by suppressing the dipole noise. Ampli-
tude fluctuations may be correctly predicted in that way, but not phase fluctuations. Other
assumptions made concerning dipole noise are ‘ad hoc’.

Many popular texts assert that shot-noise fluctuations should be associated with any particle
flow. This is a misinterpretation of McCumber’s quantum results (see the review in [14]), who
has shown that shot-noise fluctuations should be associated with atom-to-photon or photon-to-
atom conversions. For a consistent application of McCumber’s results one must consider not
only the photon generation mechanism, but also the absorption of photons in the detector.
The McCumber shot-noise term for this absorption process is precisely our noise term (,

‘hich enters into both the rate equation for the photon number m and the rate equation
.or the detector carrier number, say n,. In other words, the theory of laser amplitude
noise advocated in this paper may be viewed as a consistent application of McCumber’s
principles.

Organization of the paper
It is shown in Section 3 that the RIN is not affected by optical attenuators, even if negative, a
situation that may occur with quiet pumps. Furthermore, the cross-spectral density between
photon-number fluctuation and relative photon noise is found to be independent of attenuation.

High-power laser-oscillators, treated in Section 4, are exceedingly simple because the atomic
number need not be considered. One proves that nonfluctuating pumps entail nonfluctuating
light at small baseband frequencies, in agreement with previously cited quantum theories. A
more realistic oscillator model that takes into account spontaneous recombination is treated
in Section 5. The expression for above-threshold low-frequency RIN is derived. The cursory
discussion in Section 6 shows that laser diodes are not very different from three-level-atom
lasers as long as the intraband scattering time is small, say less than 0.2 ps, and at moderate
power. For larger values one must take into account both the spectral-hole-burning effect
and statistical fluctuations (derived from equilibrium thermodynamics). Because this paper is
tutorial in nature, we avoid discussing intricate, perhaps more realistic, models.

Sans-serif letters are employed to denote gain G, double-sided spectral density S, (non-
measurable) light intensity I, and noise sources q, r, §. The averaging signs ( ) are omitted
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when no confusion with instantaneous values may occur, e.g. in the expression of spectral
densities. Complex quantities refer to nonzero baseband frequencies f.

2. Absorbers and emitters

The theory treats absorbers and emitters on the same footing. Cold absorbers consist of a large
number of two-level atoms, essentially all of them in the ground state. Light at frequency v is
absorbed if hy, is approximately equal to the energy difference between two atomic levels
(resonant one-photon transition). Likewise, emitters with complete population inversion con-
sist of atoms in the upper state. In either case the probability that a transition occurs is propor-
tional to the number m > 1 of photons in the cavity.

Consider first absorbers, ¢.g. detectors. The transition of an atom from the lower (or ‘absorb-
ing’) state to the upper (‘emitting’) state can be monitored in various ways. In optical detectors,
atoms in the upper state become ionized and the freed electrons generate an electrical current
that can be amplified with the help, for example, of a transistor. When the atomic wavefunc-
tions are neither symmetrical nor antisymmetrical, transitions directly induce current pulses
in the electrical leads, a phenomenon called ‘optical rectification’. In either case, the atoms
are subjected to both a field at frequency v, and a constant or slowly-varying field that per-
forms an almost continuous measurement of the atomic state. This situation should be distin-
guished from the well-known Rabi evolution of atoms submitted to prescribed optical fields.

To be specific, let us assume that n;, absorbing atoms are located between two conducting
plates a distance d apart, small compared with wavelength. If £ denotes the root-mean-square
(rms) applied optical field, the rms voltage at frequency v, between the plates is dE. For
convenience, we denote by V this voltage divided by (Jw(,)”z. The rules of quantum mech-
anics applied to the atom enable us to calculate the rms current at frequency 14 induced in
the leads as a result of stimulated absorption. For convenience, / denotes the current divided
by (hwy)'/?. For electric-dipole-allowed one-photon transitions, first-order perturbation shows
that the quantum-mechanical expectation of I is proportional to V, i.e. the system is linear:

(I)=6V (1)

The optical conductance G, proportional to the number ny of atoms, can be considered constant
since most atoms remain in the ground state. The atomic wavefunctions are assumed not to
overlap; i.e. cooperative effects are not considered.

The rate Q of photons incident on the detector is defined as the incident electromagnetic
power divided by the photon energy hvy. According to previous definitions, @ is equal to
VI. If both sides of Equation 1 are multiplied by V and we set P = V2, the average value of
Q is proportional to P:

(@) =GP (2)

Let us consider now instantaneous values of Q and P, and account for random jumps from
the absorbing to the emitting state. We have

Q=GP+q Sq=0 (3)

A simple argument shows that the spectral density of the process q(¢) is equal to the average
rate (Q), denoted here simply as Q. The argument is that, in the special situation where V, and
thus P, has a prescribed classical value, the atoms are independent of one another since
they cannot ‘communicate’, so to speak: neither directly because their wavefunctions do not
overlap, nor through the optical field since the latter has a prescribed value. Thus, atomic
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transitions occur at independent times, i.e. they are Poisson-distributed. In one-photon
processes each transition is caused by just one photon (according to the law of energy conser-
vation). Thus, the fluctuation q(f) is also Poissonian, i.e. has a spectral density equal to the
mean rate (Q).

In general P fluctuates but, well above threshold, the fluctuation AP is small. The fluctuation
AQ of Q is given, according to Equation 3, by

A AP
EQ:?*% Sqt =0 (4)
Because the relative variation of Q is small, the process remains approximately stationary. It is
shown in Section 4 that amplitude fluctuations of high-power laser oscillators follow from
Equation 4 alone.

Often, light is absorbed at the end of a possibly long (lossless, dispersionless) transmission
line. If D(¢) denotes the absorbed photon rate and Q(r) the rate at the laser output, it is intuitive
that D(1) = Q(t — 7), where 7 denotes the transit time along the line. Equation 3 is easily
formulated in terms of propagating waves [4], instead of voltages and currents. According to
the wave formalism, a weak B-wave, expressing the intrinsic fluctuations at the detector,
and analogous to the vacuum wave considered in the quantum theory, propagates towards
the laser cavity. This counterpropagating B-wave does not directly affect the detector current
but it is instrumental in determining the amplitude fluctuations of the strong A-wave emanat-
ing from the laser cavity.

The emitter could also conceivably be connected to the laser cavity by means of a long trans-
mission line. The formalism in [4] then shows that a weak counterpropagating B-wave propa-
gates from the cavity to the emitter, and anticipates the intrinsic fluctuations at the emitter. It
can be shown using the formalism of [4] that macroscopic causality is nevertheless preserved.
Note that, according to our formalism, the optical field is classical, i.e. described by commuting
functions of time, but not directly measurable. The electrons or atoms, in contradistinction, are
quantized, and their number is measurable.

2.1. Relative intensity noise
Once the laser oscillator equations have been solved, AP is found to depend on q and on uncor-
related noise sources denoted collectively by z, according to

AP
-5 —Ztaq (5a)
Sapp=S8;+aa Q (5b)

where a is a constant that may be complex at nonzero frequencies, and stars denote complex
conjugation. Using Equations 4 and 5, AQ and its spectral density read, respectively,

AQ 1
o —z+(a+Q)q (6)
Sage =8+ (“ "‘(—l)) (“ + é)HQ = Sarp +£_]? ta+a (7)

using Equation 5b.
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Let us now introduce the relative-intensity-noise (RIN) defined as

I{g =8a/1=Sag0 — é =Sapptat+a (8)
the factor 2 being introduced because single-sided spectral densities are employed in optical
engineering. The RIN (which may be negative) is useful because it is independent of linear
losses, as shown in Section 3. Note that the so-called ‘light-intensity’ | is defined in Equation
8 by its spectral density, not explicitly as a function of time. It is employed in the phasor theory,
Section 7.

Consider as an example high-power laser oscillators with quiet pumps, treated in Section 4.
We have in that case AQ = 0 at low frequencies, and

AP q
—=-2 ©)
P Q
implying, by comparison with Equation 5a that z=0 and a = —1/Q. It then follows from
Equations 5 and 8 that
1 RIN 1
Sapr== —_——— (10)

0 2 Q

The difference between S,p/p and RIN/2 is obvious. The RIN is negative while the spectral
density of AP is positive.

2.2. Optical cavities

When the n, absorbing atoms are located in a single-mode cavity modelled by a circuit with
capacitance C tuned at frequency 1. it is convenient to introduce the photon number m and
to exhibit the dependence of G on n according to

G
EEA“H[, m=CP (11)

where Ay is a constant, and it is assumed that all the atoms are subjected to the same optical
field. Using that notation, Equation 3 reads

Q = Ayngm + q Sq=0 (12)
Since ny, is presently a constant, the fluctuation AQ is written as
AQ = AympAm +q Sq=0 (13)

2.3. Emitters

Let us now turn our attention to emitters with 7, atoms in the absorbing state and n, > n, atoms
in the emitting state. If R, and R, denote the upward and downward rates respectively, the
relations

R,=Anm+r, S;.=R, (14a)
R, =Anm+r, 8,.. =R, (14b)

are analogous to those in Equation 12. Note that same constant A applies to absorption and
emission, and that the r, and r, noise sources are independent.
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The net emission rate R is the difference of R, and R,
R=R.—R,=Gm+r S.=R,+R.=(2n, - 1)R (15a)

where we have introduced the noise term r, the net optical gain G, and the population inversion
factor ny, according to

He

r=r,—r, G=A(n, —ny) = (15b)

R =il

__The presently derived results, valid when the photon number m is large compared with unity,

suffice to describe the noise properties of laser oscillators above threshold in the steady state.
The relationship to single-atom behaviour is clarified below.

2.4. Quantum jumps

Let a single two-level atom, known to be in the ground state at t = 0, be submitted to a resonant
prescribed optical field. The probability p that the atom will be found in the upper state at time
t=Aris [7]

p = sin’ (g At/2) = (Qf At/4) At (16)

if At is small compared with the Rabi period 27/Qg. This probability is proportional to the
optical field strength squared, say m. Because Ar is small, p may be viewed as the probability
that a transition occurs during the time interval 1 =0 to t = At. If imperfect continuous
measurements are modelled by ideal measurements at times At, 2At, ..., a telegraphic
(Markov) process is generated: once the atom is in the upper state, there is a probability p
that a downward transition will occur during any subsequent time interval At and so on.
Under the conditions just specified, it makes sense to assert that the atom is, at any instant,
either in the ground state or in the upper state. In the case of a detector, electrons that have
reached the upper state quickly decay to the ground state, e.g. by flowing through external
zlectrical leads. Accordingly. the detected signal fluctuates at the shot-noise level, even for a
single atom under some conditions.

2.5. Spontaneous emission

The refined formulation given below that includes spontaneous decay would be required to
describe below-threshold behaviour (possibly using numerical methods) and laser start-up.
The probability for downward transition of emitting-state atoms is not quite proportional to
m as asserted earlier. More accurately,

p=Am+1) (17a)

where A is a constant. The term 1" in Equation 17, independent of the number of photons
already existing in the mode, follows from linear noise theory [6]. If this term is considered
Equation 15a reads

R=G(m+n,) +r S =(2n, - 1)R (17b)

For an oscillator with cavity photon-lifetime 7,, steady-state oscillation requires that
(G) = 1/7,, and thus the additional term in the expression for R is Gn, = n,/7,.

This term is viewed as the spontaneous emission rate in the mode. It is often evaluated
through a complicated procedure. One first employs the relation established by Einstein
between the total spontancous emission rate S, and the gain (G}, and considers that only a frac-
tion 3 &~ 10~° of this rate is effective as a noise source, where /4 is the product of two terms:
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one obtained by considering that the oscillator filters one spatial transverse mode out of many,
the other being the ratio of the frequency spacing between adjacent longitudinal modes and the
spontaneous-emission spectral width. This procedure may be useful when spontaneous carrier-
recombination is essentially radiative, since the total spontaneous-emission rate is then known
from the threshold current. Its usefulness may be questioned for 1.55 pm laser diodes because
carrier recombination is mostly nonradiative in that case (5, < § ).

Let us emphasize that the value of 3 is fixed by general physical principles, as discussed
above, and that /3 should not be considered an adjustable, empirically determined, parameter.
This is why, in particular, the strong observed relaxation-oscillation damping of laser diodes
cannot be explained by postulating large 3-factors. Gain compression (to be discussed later)
is required to explain the observed effect.

Measurements of the 3-spatial-factor with the detector placed in front of the laser-diode edge
suffer from inadequate spatial filtering and are unreliable. A crude spatial-mode filtering con-
sisting of a pair of apertures appropriately spaced apart (with a Fresnel number of the order of
unity) should be employed. Otherwise spontaneous emission rays may enter the detector and
lead to an overestimation of the F-value.

3. Role of optical losses
Let O denote as before the total photon emission rate. The detected rate D may be less than Q
for various reasons. For example, the detector might collect only part of the light emitted by the
source, as shown in Fig. 1, or a beam splitter might divert part of the emitted light. In any event
the attenuator is assumed linear, cold and frequency-insensitive.

For laser diodes without gain compression

D_ 1
Q !c _!Ih

where Iy, I, Iy, denote respectively the detected, injected, and threshold currents.
To model the absorption mechanism, let the conductance G previously considered be split

(18)

(a)

(b)

Figure 1 Optical losses. (a) Light from the laser is only partly collected by the detector. If the output photon
rate is Q, the detected photon rate is D < Q. (b) Equivalent circuit. The total conductance G is splitinto a loss-
conductance G and a detector conductance Gp. In the configuration in (a) the conductance G_represents an
absorber presumed to exist at infinity.
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into two constant conductances, (7 and Gp, with
GL+Gp=G (19)

G being arbitrarily elected to describe the loss while Gy represents the detector. If both sides
of Equation 19 are multiplied by (P), where P = V=, the average rates obey

L)+ D)=(Q) ({L)=GLP) (D)=GCp(P) (20)
Going back to fluctuations, the basic equation (4) splits into
AL=G AP+ !¢ Se=L (21)
and
AD = Gp AP+ d S¢=D (22)

AL and AD represent the fluctuations of the photon rates that are absorbed in the loss and
detection conductances, respectively. ¢ and d are independent fluctuations that add up to q:

t+d=g (23)
3.1. Relative intensity noise
Equation 22 can be written
a0 _ar 4 o
D P D
because Gp(P) = (D). According to Equation 5a, AP/P may be written in the form
AP
5 =zt ad + al (25a)
Sapp =98, +aa’D +aa’L (25b)

if Equation 23 is used, since the three terms in Equation 25a are uncorrelated and the spectral
densities of d and ¢ are respectively equal to D and L.
We have from Equations 24 and 25

AD 1 ,

?—Z+(ﬂ+5)d+ﬂf (263}
S =8+ -1—l g ) D 2

ADID = 2; a D a +D + aa

_B I :
= A;}-p+5+ﬂ+ﬂ (26%’)

if Equation 25b is employed.
AP/P and a being independent of the attenuation, it follows from Equation 26 that the RIN
defined in Equation 7,

RIN 1 1
5 = Sag/o — 0 Sanmn — D (27)

is independent of the attenuation and is therefore a useful concept. However, “light intensity’
itself is not a directly measurable quantity.
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The RIN is best measured with a pair of low-noise (preferably cooled) p-i-n photodiodes
(Hanburry-Brown and Twiss-type experiment). The average currents give the incident
power. When the radiofrequency outputs are multiplied together to eliminate the uncorrelated
parts of the photocurrents, the RIN is directly obtained. The accuracy is best if the optical
attenuation between the laser and the detector is kept as small as possible, i.e. if the detector
current is close to the laser diode current, but one must also ensure that no light is reflected
back to the laser. Unfortunately, existing optical isolators introduce losses and spurious reflec-
tions. Note also that the measurements should be performed above, approximately, 1 MHz to
avoid the occurrence of 1/f noise and (crystal) thermal effects.

For calibration, a light source of equal power fluctuating at the shot-noise level is needed.
Thermal sources and light-emitting-diodes (LED) are, in principle, super-Poissonian. But
they may be employed in the guise of Poissonian sources when the detector bandwidth is
very small compared with the optical bandwidth.

3.2. Correlation

Correlations between various measurable fluctuations are important to better understand the
origin of noise, and also in applications. In the case of laser diodes we have rather easy access
to the electron number fluctuation through the electrical voltage across the diode. This noise
term may be employed to minimize amplitude or phase noise.

A quantity x, independent of the attenuation, such as atomic number fluctuation, can be set
equal to y + bq, where b is a constant, and y and g are uncorrelated. Since the cross-spectral
density of g and d/D is unity, the relation

S..a0/0 = Scan/p (28)
follows from Equation 24. Note that it is here essential to consider AD/D and not Al itself.

It is therefore appropriate to define attenuation-independent correlations

= S_\n.._\f)
[SanlSap — D|]'2

c nd

- SAH [ AD/D
[Sau/|RIN/2| ]/

where we have taken for x the atom-number fluctuation.

For laser diodes, An in Equation 29 is proportional to the fluctuation AU of the electrical
voltage across the intrinsic diode. At high power, the fluctuation AU may become negligible
compared with the Nyquist noise of the diode series resistance, of the order of 1. But since
this thermal noise is independent of the other noise sources it can, in principle, be subtracted
out. Note that, above threshold, the series resistance is almost equal to the measured diode elec-
trical impedance.

For measuring electrical—optical correlation, it is convenient to introduce a long delay line,
either optical between the laser and the detector or, equivalently, electrical between the detector
and the correlator as done in [27]. As the frequency varies, the relative phase of An and AD
varies quickly and calibration is easier.

To measure the photon number m at one time it suffices in principle to disconnect the optical
cavity from the active material and count the number of photoelectrons in the absorber (photo-
count) over a period of time large compared with the cavity decay time 7. The cross-correlation
(Am(7) An(0)), 7 > 0, may then be obtained from measurements performed on the laser itself.

The direct continuous measurement of the photon number m has been shown in recent years

(29)
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to be possible with the help of Kerr’s effect (classically described as an increase of the
refractive-index as a function of light intensity). Changes of the m-value result in measurable
changes of the phase of a probe-wave phase whose frequency is different from the signal
frequency. Such a measurement would not affect the measured m-value (quantum-
nondemolition detection), but it would scramble the oscillator phase and deeply affect the
laser operation. Thus, it appears that the photon number cannot be continuously and directly
monitored.

The spectral density of m can be determined, however, if the detected rate AQ(r) is available,
as shown in Section 4. Because m is measurable, albeit indirectly, its spectral density must be
positive (see the appendix).

4. Laser oscillators negiecting spontaneous decay

The oscillator model consists of a single-cavity resonating at frequency 1, and containing
atoms in the ground state playing the role of detector. The absorbing atoms may be located
at the end of a long transmission line and be identified with a detector. It is then assumed
that no light is reflected back to the laser cavity. Whether the absorbing atoms are located
inside or outside the cavity turns out to be immaterial.

Spontaneous decay from emitting to absorbing states is considered negligible. This condition
is well fulfilled for some laser diodes that operate at, say, ten times the threshold current. In
such circumstances spontaneous emission is entirely irrelevant.

The fluctuation AQ of the rate at which photons are absorbed is related to the fluctuation Am
of the number m of photons in the cavity according to Equation 13:

Am
AQ="7+0  Sy=0 (30)
where we have introduced the photon lifetime 1/7, = Agn,.
To offset the loss, three-level atoms (with an emitting level e, an absorbing level a and a
ground-state level g) are pumped at rate J, as shown in Fig. 2. It is assumed that electrons

A e
R
A
Q f X a
)
(a) (b)

= H — Q 0o

N n L m i -
o

Sy

(c)

Figure 2 (a) Schematic representation of a two-level atom in the absorbing state. @ denotes the rate at which
incident photons are absorbed. (b) Three-level atom with working levels a (absorbing level) and e (emitting
level). Electrons are pumped from the ground level g to the emitting level at rate J, which may be nonfluctuat-
ing (£ = 0). Decay from the absorbing state a to the ground state is assumed in this paper to be instantaneous,
so that there are no atoms in the absorbing level. R denotes the stimulated emission of radiation rate. Spon-
taneous decay is not shown. (c) This schematic represents the particle rates (J, S, R, L and D, with
L+D =Q), and particle numbers: atom number n and photon number m. S represents the spontaneous
(radiative or nonradiative) decay.
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in the absorbing level decay almost instantaneously to the ground state by some process and
become optically inactive. Accordingly, the number 7, of atoms in the absorbing state is negli-
gible: n, ~ 0. Stimulated absorption does not occur and we need only consider the number
n, = n of atoms in the emitting state.

The rate at which atoms in the emitting state accumulate is the difference between the pump-
ing rate J and the rate R of decay,

dn

—=J—-R 31)

dr (
On the other hand, the cavity equation

dm :

—=R- 32

= 0 (32)

asserts that the rate dm/dt at which photons accumulate in the cavity is the difference between
the rate R at which photons enter the cavity and the rate Q at which they leave the cavity.

If we consider small-amplitude fluctuations at baseband frequency f = (1/27, we may
replace d/dt by i{2 and Equations 31 and 32 read, respectively,

i0An=AJ — AR (33)
i Am = AR — AQ (34)

Obviously, the number of photocounts is the variation of n + m over some time interval; for
quiet pumps AJ = 0. Accordingly, m(t) can be obtained experimentally from measurements of
n(t) and Q(r). But m(¢) cannot be measured directly without scrambling the phase.

4.1. High power

To best exhibit the essential features, assume that the photon number m is much larger than the
atom number. Atoms injected in the cavity then decay almost instantaneously. Because J and R
are large, the term dn/dr can be neglected and thus AR = AJ, where AJ represents the pumj
fluctuation, which is independent of the other noise sources. Equations 30 and 34 read

A
iNAm=AJ-AQ=AJ-—"-q Sq=0 (35)
™
a relation that can be solved for Am:
Al -q
= 36
Am= =T (36)
The spectral density of Am is thus
s;‘.m is;\..r "T 0 (3?)
Pt sl
Let us now set
Say=¢ (38)
where £ = 0 for a quiet pump and & = 1 for a Poissonian pump. Equation 37 reads
14§ D 28 f
Qslm;'m i 1_—-‘_- Qc? 0 = S!Tp :E (39}

where we have used the relation (Q) = (m)/7,.
The variance (Am>) of m is the integral of its spectral density over frequency f from minus
to plus infinity. We readily obtain from Equation 39
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tions is at the shot-noise level at any frequency,
Normalized frequency e x=1,
m
(Am*) = (1 +8)7 (40)

Thus, for regular pumping (£ = 0) the photon number variance is half the mean, while for
Poissonian pumping the photon number variance equals the mean.

A quantity of greater interest is the detected photon rate Q. Inserting the result for Am in
Equation 36 into Equation 30, we obtain

_Am _AJ +i2q

AQ 1+i0°

= (41)
Equation 41 shows that at small frequencies (©2° = () photon rate and pump fluctuations
coincide: AQ = AJ. In particular, the photon rate does not fluctuate for a quiet pump
“AJ = 0). This fundamental conclusion, which escaped the attention of early laser-noise theor-
.ts, was discovered by Golubev and Sokolov [16] from quantum theory. It is remarkable that it
follows from an elementary classical theory as well.
According to Equation 41,

E 0 o2

=3
E= = + =
X=0"Sno=7—quti g

(42)

which is represented in Fig. 3. The first term on the right-hand side of Equation 42, which
expresses the laser response to pump fluctuations, decays as a function of frequency. The sec-
ond term vanishes at zero frequency and increases with frequency to reach the shot-noise level
(SNL) at large frequencies. The sum of the two terms turns out to be at the SNL (i.e. y = 1) at
any frequency.

From Equation 42 the RIN defined in Equation 8 reads

RIN £ 1

7 - 0%0e~ =10

Within the present high-power approximation, and for £ = 1, the correlation between atomic
number and detected current fluctuations vanishes at all frequencies [3].

(43)

4.2, Carrier dynamics
When the atomic number dynamics is considered, a large relaxation-oscillation peak appears in
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the noise spectrum. To see this important fact, let us restore the dn/ds term. Since n, = 0, full
population inversion is assumed in the expression of R in terms of m, (Equation 15), i.e. n, = 1.
The steady-state condition is

(Jy=(R) =(Q) =A(n)(m) = ti} (44)
P
The rate equations in Equations 33 and 34 read
.o An _ AJ AR _
if2% D 0 (454,
Am AR AQ
N —=——-— 45b
0 0 o
where Q° = Q'rp, € =n/m, and
AR An  Am r
A ek T S, =R=0 4
0 n ¥ m i3 Q v g e
AQ Am q B
2 - mto Sq=0 (45d)
Solving Equation 45 for An, Am and AQ. we obtain,
Of (e, Q) % =iAJ -(1+iQ°)r+q (46a)
AN S o
Qf{E.Q}?:AJ—F]QFT'—(I-FIQ €)q (46b)
o AQ ) c O o2
QI(F,Q}-i)-=ﬂ.f+1§?€r+[1§?{1-—F}—FQ']q (46¢)
where
T =1 — ™ 40P (46d)

The spectral densities of An, Am and AQ (expressed in terms of the RIN) are thus,
respectively,

2+ (E+1)0%

QSAH_'}J = F(G. SZC) (473)
€4 1+26°0%
OSamim = —F(Tf))_ (47b)
RIN  €—1+2¢0% .
0 = TR e
where
F(e, ) = |f(e.9°)]F = (1 = €92 + Q2 (47d)

The zero of F(€2°) in the complex plane gives relaxation-oscillation frequency and damping.
The relaxation frequency f; is given approximately (e = n/m > 1) by ¢ Q7 = 1, i.c.

fo ~ o/l (48)
Let us recall that £ = 1 for a Poissonian pump and £ = 0 for a quiet pump.
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4.3. Atom and photon number variance
The photon number variance (Am”) most often considered in early laser-noise theories is
obtained by integrating over frequency the spectral density given in Equation 47b.

We will need the mathematical results

=2 dy [(F ex?
S ax ————
o F€e,x) ~ F(ex)
“at hold for any e-value. The first integral is easily evaluated for ¢ = 0. To show that this
ategral does not depend on ¢, it suffices to differentiate with respect to e. Two terms are
found that cancel out when the change of variable ex = 1/y is made in the second one. The

same change of variable shows that the second integral is equal to the first.
Using Equation 49, Equations 47a and b lead to

(/_\mz} {Anz) n £+1
- —+
m n m 2

=7 Fle,x) = (1 SERPYe it (49)

(50)

The expression in Equation 40 is recovered from Equation 50 when #n is neglected in compari-
son with m, i.e. at high powers.

4.4, Langevin’s form
For the sake of comparison with previous theories, let us lump together the independent noise
terms and write Equation 45 in the form

An A
T 1 O i AT (51a)
f.TI., TP
A
iQAm="24F, (51b)
pr

here Langevin’s forces are defined as
F,=AJ-r F,=r—-q (51¢)
The (proper and cross) spectral densities of F,, and F,, follow from the above expressions in

terms of r and q and the spectral densities given earlier for these quantities, namely (introduc-
ing for generality the population inversion factor n,, which was unity in previous equations)

S, = (2"p = E)Q S, = ZHPQ S,,=(1- Z!IP)Q (51d)
The spectral density of Am reads, with that notation,
Fe, QC)Tp_ZS-_\m =8, +(1+ 5 Ve S + 28, (51e)

which, of course, gives Equation 47b again when Equation 51d is employed and n, = 1. We
note that at low frequencies the value of n, does not affect the photon number or photon
rate spectral densities.

4.5. Equivalent electrical circuit

It is very useful for classroom demonstration and simulation in systems to express the above
results in terms of an equivalent electrical circuit. The atom—photon dynamics is usually
modelled by a resonating inductance—capacitance circuit. In order to preserve the symmetry
between emitting and absorbing elements, it is preferable to consider instead negative and
positive capacitances. Negative elements have been realized with active electronics (negative-
impedance converters) [28].
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Figure 4 Equivalent electrical circuit for a laser oscillator with spontaneous decay neglected. For simplic?
the photon lifetime is taken as the time unit. The cavity is modelled by a capacitance equal to the photon lit.
time 7, i.e. unity. The emitting atoms are modelled by a resistance equal to —1, in series with a voltage source
whose spectral density is 1/Q, and a parallel capacitance opposite to the ratio n/m of electron and photon
numbers. The absorber (detector) is modelled by a resistance of unity in series with a voltage-noise source
of spectral density equal to 1/Q. The detector capacitance (carrier storage and parasitic) is shown in dotted
lines only to emphasize the symmetry between emitting and absorbing elements. It is not considered in detail.
The current source on the left (A J/J) represents the pump modulation and noise, while the current AQ/Q on
the right represents the relative detected-current modulation and noise.

The equivalent circuit shown in Fig. 4 follows from Equation 45 written in the form

am_AQ 9 (52a)
m Qo Q@

AJ .
pm Bm b B e (52b)
m n @ J m n

The voltage across the middle capacitance of value unity (representing the optical cavity) is
Am/m. The current AQ/Q flowing through a unity resistance gives the the first term on the
right-hand side of Equation 52a, while the second term is a voltage noise source denoted =
in Fig. 4 with spectral density 1/Q. The dotted-line capacitor corresponding to carrier storage
in the detector is shown only for the sake of symmetry.

Looking now at the left-hand side of the schematic, we note that Am/m in Equation 52b is
the sum of three terms: (1) the voltage —An/n across the capacitor expressing carrier storage in
the laser active material, (2) the voltage noise source ‘e’ of spectral density 1/Q, and (3) the
voltage across the resistance of value —1. The current flowing through this resistance is indeed
the injected pump fluctuation AJ /J and the current flowing through the capacitor of value
—n/m, subjected to the voltage —An/n, i.e. iQ2” An/m.

This schematic makes it obvious that at low frequencies AQ = AJ. Since the capacitances
can be removed at low frequencies, the current source on the left in Fig. 4 flows unimpeded into
the right lead, and thus AJ/J = AQ/Q. The relation AJ = AQ follows since the average
rates J and Q are equal.

The equivalent circuit can easily be generalized. A nonzero driver admittance is represented
by an element connected in parallel with the current source shown on the left. To account for
spontaneous carrier recombination one must also introduce a noise-current source. Spectral-
hole burning leads to nonunity values for the resistance on the left of the schematic, the
noise sources being unaffected.

5. Laser oscillators with spontaneous decay
We now relax the assumption made in the previous section that spontaneous decay is negligible
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in comparison with stimulated decay. Equations 31 and 32 then read

L (53a)
de 77 -
dm
—=R-0 53
Z—R-( (53b)
The steady-state condition obtained by setting dn/dt = dm/dt = 0 is
(JY=(S)=R) =(Q) (54)

Radiative spontaneous decay is proportional to the number n of atoms in the emitting state
and fluctuates at the SNL,
5=;-’+s S, =8 (55)
where 7 is the SponlaDE{)u5nrec0mbinati(;n lifetime. Equation 55a reads, to first order,
M=%+s S;=5=J-0 (55b)

The rate R at which photons are emitted (Equations 15 and 16 with n, = n, n, = 0, n, = 1)
reads as before

R=Anm+r S, =R (56)
i.e. to first order
AR =AmAn+AnAm—+r Si=R=0 (57)

Equation 53 with Equations 55 and 57 constitute the full set of rate equations.
For simplicity, the fluctuations will be evaluated at zero frequency. Setting d/d¢ = 0 in Equa-
‘on 53 we have

AJ —AS=AR=AQ (58)
that is, explicitly, using Equations 55b, 57 and 4,
Q.f—&”—S:Ar:zArr+A:r&:n+r=Aﬁ+q (59)
T T

Because A(n) = 1/7,, the last equality in Equation 59 reads simply
AmAn=q-r (60)

Since ¢ and r are independent and have both spectral densities equal to Q, and A{n)(m) = (Q),

the spectral density of An/n is

2

0
When the expression for An in Equation 60 is introduced into the first term in Equation 59,

we obtain

si\u,“n — (6 1 )

8
AQ:/_\J-S—E(q—r) (62)

where the relation A(m)7, = (Q)/(S) is used. The noise terms AJ, S, q and r in Equation 62
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are independent and have spectral densities
Sy =8 S, =8 Sq=5, =0 (63)
where £ = (0 for a quiet pump and £ = 1 for a Poissonian pump. Thus
S 2
The RiN defined in Equation 7 may be written as
RIN 1 2
S TZS(SAQ;';—E) (65)
Thus, according to Equation 64
RIN S[ /J\ S $\? 47
—=—|[&l = —+2l=] =1 =[2-#(1-¢)]
s =5l@) rg+2(g) -] ~e-ru-a1 o
where
' 0
=E=—=1== 7
v=8 s &7

is the ratio of injected to threshold pump rates minus 1. On the left-hand side of Equation 66 the
RIN has been normalized by § rather than @ as in the previous section because we now
wish to investigate the effect of pumping rate on intensity noise. For a quiet pump (€ = 0) the
RIN is negative when r > 2. For Poissonian pumps (£ = 1) the RIN, equal to 4JSZ/Q3_. is
inversely proportional to the square of the output power much above threshold. The above
expressions for the RIN can also be obtained by specializing the expressions in [3]. The varia-
tions of the RIN given in Equation 66 as a function of the injected-to-threshold pump rate ratio
are shown in Fig. 5 for £ = 0.

If the threshold current of a laser diode is 1 mA and the wavelength is 1.55 gm, for examplc.
the RIN at four times threshold is 74 x 10°™ for a pump fluctuating at the SNL, and
—37 % 10'® for a quiet pump. Measured values are generally much higher as a result of
spurious-mode oscillation.

The attenuation-independent correlation C,; between the fluctuations of n (or of the electri-

4 - | !
I"\
\
3- \ L
\
24 .\ Semiconductor -
5 \ O\ Figure 5 Variation of SRIN/2 (where S = Iy,
o "\ \ denotes the spontaneous decay rate, and
9% 14 " \\ RIN the low-frequency relative-intensity
e — noise) as a function of r +1=1/,/l,, where

0 SR | l, is the pump rate and /, the threshold
pump rate. The lower curve is for three-level
atoms with quiet pumps (£ =0). The upper

-1 — T T T T 1 curve is for a laser-diode (see Section 6)
15 2.0 55 3.0 3.5 4.0 45 With £=0, (=1 (radiative spontaneous

decay) and a, defined in Equation 72b, equal
Pump rate/threshold pump rate to 2.35.
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cal voltage U across the intrinsic diode for a laser diode) and the detected current fluctuations
defined in Equation 29 reads

14r
2

Cual * =2~ r(1 - ©)| (68a)

The correlation tends to zero at large powers, in agreement with the result given at the end of

the previous section. It is singular at r = 2/(1 — &) since the RIN then vanishes. In the special
se where £ = 1 (Poissonian pump) we have simply

Cm{ R ‘!{h /ft (681))

where I, and I, are, respectively, the threshold and injected currents.

In contrast to C,;, which is attenuation independent, the normalized cross-spectral density
between the atom electron number n and the detected rate D (or, equivalently, between the
electrical voltage U across the intrinsic diode junction and the detected current 1y): Sx, ap
[SAnSap] 12 sometimes called ‘coherence’ and denoted by 7. depends strongly on the opti-
cal attenuation. It is easily shown from previous equations that ~ drops to negligible values just
above threshold when the optical attenuation between laser and detector is large (say, 20 dBs).

This fact is not always appreciated for the following reason. Some authors assume that the
detector rate D is at any instant proportional to the photon number m, D = om/,, where the
constant o < 1 expresses the optical loss. They further identify RIN/2 as the spectral density of
AD/D. Since both AD and D are multiplied by the same o-value, the RIN/2 evaluated in that
way seems to be attenuation independent. But this quick proof is erroneous, because it ignores
the McCumber shot-noise term in the detection process and the random photon decimation
caused by optical losses. When the same principles are applied to the coherence =, one is
tempted to conclude that + is attenuation independent because, again, the same o-value

wpears in the numerator and denominator of the expression defining ~. But, as we have
-en, such a conclusion may be grossly erroneous.

Finally, let us recall that, below threshold, the laser output is thermal-like (linearly amplified
spontaneous emission) and that the shot-noise theory is wholly inapplicable (as McCumber, of
course, was well aware).

6. Laser diodes
It follows from the Pauli principle that one electron at most can occupy a given state. Electron
energies therefore must spread out, even at 7 = 0 K. Only a few per cent of the electron—hole
pairs (say, n1) have an energy spacing appropriate for interaction with the optical field. The total
number of electrons, equal to the total number of holes, will be denoted N > n. In the standard
theory of laser diodes it is assumed that the electrons are in thermal equilibrium in the conduc-
tion band, and the holes are in thermal equilibrium in the valence band, with temperatures equal
to that of the crystal. This assumption allows quasi-Fermi levels in the valence and conduction
bands to be defined, with an energy spacing equal to the electrical voltage applied to the
intrinsic diode multiplied by the electron charge (see, e.g.. [29]). This theory is applicable at
moderate power when the intraband carrier—carrier scattering times are small, typically less
than 0.2 ps. This theory of laser-diode noise does not differ much from the three-level-atom
theory, except for the fact that parameters that are unity for three-level-atom lasers acquire
nonunity values.

The optical gain G is a nonlinear function of N. An often employed, plausible, expression for
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G is A(N — N,), where Ny is called the transparency carrier-number. An important parameter is
the (dimensionless) differential gain

NdG N
GdV NN,
whose typical value is g = 2 (it N = 2Ny).

The population inversion factor n, is no longer unity, a situation that would also occur for
three-level atoms if there were some delay in the absorbing-state to ground-state decay. "
semiconductors, it may be that neither the emitting nor the absorbing level is occupied L_
an clectron or that both levels are occupied. In either situation, interaction with the optical
field does not occur. Yet level pairs of the latter kind contribute to carrier dynamics. The
well-known general expression for n, is {1 —exp|(hv — eU)/kT ]} '. Note that the values
of n, are usually smaller than those derived from the expression N /(N — Ny), which has
been conjectured in early works on the basis of an analogy with two-level atoms. Short laser
diodes operate at high carrier densities and n, may not be much greater than unity even at
room temperature. A typical value is n, = 1.5.

Radiative spontaneous carrier recombination of three-level atoms is described by Equation
44. This expression applies to semiconductors only at low temperatures. At elevated tempera-
tures the so-called “bimolecular’ approximation that assumes that the rate S is proportional to
the square of N is plausible. At wavelengths of 1.3 pm and beyond, and room temperature,
spontaneous carrier recombination is in fact dominated by the (phonon-assisted) Auger
effect. Let us define in general the dimensionless spontaneous carrier recombination parameter

N dS
S dN
A typical value for long-wavelength lasers is s = 2.5.

Radiative spontaneous carrier recombination fluctuates at the shot-noise level. But this is not
so for Auger recombination, contrary to widespread belief. We thus set

S, =(S (71)

1]

g (69)

s

(70)

with a typical value ¢ = 2.
The low-frequency RIN is obtained from rather straightforward modifications to the expres-
sions in Section 5, or by setting / = 0 in equation 46 of [3]. The result for quiet pumps is

SmTNzris{(Z—rj(l+r)+(C— 1)r + 2(a — 1)) (72a)

2
a=n, (-&:) (72b)

which reduces to Equation 66 when ( =a = 1, and £ = 0. Just above threshold (r = 0), the
RIN of a laser diode is a times the RIN of three-level-atom lasers. If we introduce in Equation
72 the typical parameter values quoted above (i.e. = 2, a = 2.35). the curve labelled “semi-
conductor” in Fig. 5 is obtained.

For long scattering times (low temperatures), a hole forms in the spectral distribution, and the
concept of electron or hole temperature no longer applies (spectral-hole burning, HB). Even
when electrons and holes are in thermal equilibrium, their temperatures may be higher than
that of the lattice (carrier heating, CH). Equilibrium between carriers and lattice is mainly
ensured by longitudinal optical phonons. Because these phonons have an energy of the order
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of 30 meV, their population is small at reduced temperatures and the time it takes for the carrier
temperature to relax to the lattice temperature may exceed 10 ps. (See the textbooks [29].)

The net effect of HB and CH on laser operation is to introduce an explicit dependence of the
optical gain on photon rate, called “gain compression’, essential to understanding the high-
power density behaviour of laser diodes. Recent experiments [30] support the view that HB
rather than CH is chiefly responsible for gain compression. But CH may be important for
the phase-noise problem, not discussed in the present paper.

Other mechanisms (induced gratings, 1/f noise, spurious side-modes or TM modes, weak

_aansverse guidance, scattering centres in the junction and weak external reflexions, carrier

diffusion and capture times ...) have also been invoked to explain observed departures of
laser-diode operation from standard-theory predictions. These latter effects are not discussed
here.

Gain compression was first introduced by Channin [31] to explain the unexpectedly strong
damping of relaxation oscillations, as an explicit dependence of the optical gain on photon
number. Because little gain compression suffices to explain the observed damping. one may
equivalently assume that the optical gain depends on photon rare rather than photon number.
The difference between the two viewpoints becomes important at high power density, how-
ever, as previously discussed [4].

Statistical fluctuations of the optical gain should also be taken into account when gain
compression is considered. They introduce a minimum level floor both to amplitude and
phase fluctuations [5].

7. Phasor theory
The theory presented by Henry in [24] appears to coincide with the quantum result written in
the normally-ordered form. We have shown in [3] and [4] that the expressions obtained from
[24] for directly measurable quantities such as An and AQ coincide with that derived from the
classical theory (then called ‘circuit theory’). Agreement is proved in this section for the
photon-number variance, a result not previously reported. The assumptions made in Section
4 are employed again here for the sake of simplicity.

Henry considers in place of the photon number m the “intensity” I that has the same mean
value ((I) = (m)) but different fluctuations. The rate equations read

| A
b= s Kl TF, (73a)

€
i Al =$+F. (73b)

The (proper and cross) spectral densities of F, and F) are
Sn = [1 +6)Q S| =5 2Q snl = -2Q {730)

Note that the cross-spectral density between F, and F is twice as large as the one given earlier
for F,, and F,, in Equation 49d.

Since the above rate equations are formally the same as those in Equation 49, the spectral
density of Al is given by Equation 51e with m changed to I

F(e,)8a =S, + (1+€2Q)8,+ 28, (74)
When the spectral densities in Equation 73d are introduced into Equation 74, we obtain for the
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spectral density of Al
Q7' F (e, )8 = 16+ 2(1 + °Q%%) — 4 = £ — 1+ 26%0°2 (75)

Note that the spectral density of | is negative at 2 = 0 if £ < 1. The calculations can neverthe-
less be pursued in a formal manner.
The variance of Al obtained by integrating the spectral density given above over frequency is

(AP) =n+1im(¢—1) (76a)
The variance of m is related to the intensity variance by [24]
(Am?) = (AP) + (1) =n+1m(E+1) (76b)

a result that coincides with Equation 50. The formalism is incomplete, however, since it
does not indicate how to evaluate the spectral density of Am (only its frequency integral is
calculable).

The amplitude noise of the output light (i.e. of the detected current) is

AQ=Al+u S,=Q0 Sp,=0 (77)

In other words, an independent fluctuation u, attributed to the “detector shot-noise’ is added to
the “light intensity’ fluctuation expressed by the term Al. Accordingly, half the RIN is the spec-
tral density of Al/l, a fact that justifies the expression ‘relative intensity noise’.

Note that if F,, were ignored we would find for QRIN/2 the value +1, while the correct result
is —1. It is therefore not permissible to consider only the intensity equation Langevin term, as
many authors assert. The error becomes even larger when the n, factor is nonunity. It is only at
high frequencies that F,, can be ignored.

The formalism in [24] clearly reproduces the quantum or classical results for the model con-
sidered. The question, however, is whether it can be justified on the basis of semiclassical
‘phasor’ arguments. The discussion below shows that this is not the case.

Let us first recall the (mathematically correct) argument leading to the expression 2Q ot
the spectral density of Fj in Equation 73c. The classical field is proportional to the square root
of intensity . This intensity I is normalized in such a way that its average value is equal to the
average photon number, as indicated above. Assume that at time 7, the field is incremented by a
randomly phased field of modulus unity (‘photon event’). The light intensity then becomes
I\ﬁ+ exp(ib‘;.)]z, where 6, is a random variable evenly distributed between 0 and 27 The
increment of | at that time is therefore equal to 1+ 2v/lIcos(6,). The ‘1’ can be neglected
here because 1 is a large number. The Langevin force relating to the intensity-evolution equa-
tion is thus a sum of é-functions,

F=" 2Vlcos(6;) (1 — 1;) (78)
k

Assuming that the “photon events’ occur at an average rate 1/7, (the statistics of this point-
process turn out to be irrelevant) it is easily shown that the spectral density of F) is indeed
2l/7, =2Q.

The ‘photon events’, if real, would appear for large 7, values as rare but intense bursts of the
intracavity field. If the mean photon number is, say, 10000, the increments are of the order of
100 photons. This, to our knowledge. has not been observed. Furthermore, the phasor picture
defies one’s physical intuition when the spectral density of the light-intensity fluctuations is
negative.
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In our formulation, the expression 2Q of F,, is understood instead as 20 = Q + O, one Q
expressing an exchange of photons with the emitter, while the other Q expresses an exchange
of photons with the absorber. It is thus natural that the cross-Langevin force be equal to —Q,
and not —2(Q as in the phasor picture. The expression —2Q for S, indeed rests on the concept
that the photon-number bursts are tied to a corresponding decrease in electron number. But then
one cannot understand why S, = Q, since, according to this picture, S, should at least be equal
to 20. In fact the expression S, = Q is obtained in [24] by an argument that is correct, but that
“annot be employed consistently together with the phasor argument.

To conclude, the theory in [24] is accurate for the model considered, but it cannot be justified
consistently on the basis of semiclassical arguments. The problem is that many authors applied
the results in [24] to laser models for which it has not been justified, particularly for multiple
and dispersive elements, gain guidance, gain compression, and so on. The classical theory of
noise presented in this paper, because it is based on sound classical arguments, can be general-
ized safely.

8. Conclusion

We have presented a classical theory of laser noise that rests on a simple concept: transitions of
atoms from the lower to the upper state (or the converse) are independent when they are
subjected to a classically prescribed field. For treating amplitude noise it suffices to consider
resonant atoms. But the same principle applied to detuned atoms leads to the noise sources
required to treat phase noise. For the sake of brevity, only amplitude noise was considered.
The expressions obtained are in exact agreement with the quantum results.

For pedagogical reasons, only simple laser models have been considered. Results for more
complicated multielement lasers have been discussed elsewhere [32]. Many other problems
(e.g. feedback [33] and laser start-up [34]) have been treated by alternative semiclassical or
quantum methods. It is our intention to reconsider these problems in a unified manner.
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Appendix: Spectral densities

The spectral density of real, zero-mean, ergodic, stationary random functions is considered. Fou
a complete discussion the reader may consult textbooks such as [35]. The quantities denoted
here by x or y correspond to An, AQ,... in the main text. Ergodicity implies that ensemble
averages can be replaced by time averages. This is required since any practical measurement
rests on time averaging. Stationarity means that the origin of time is irrelevant. We restrict
ourselves to real functions of time because phase fluctuations are not discussed in the main
text.

A random function is denoted x(¢, ) where ¢ denotes time and ¢ belongs to a probability
space. For each (-value, x(¢) represents a function of time, the (-argument being omitted for
brevity. A random function is characterized by a probability p(x;,....x,; f1,.. .. t,) dxp -
dx, with x between x; and x; + dx; at time f,..., and between x, and x, + dx, at time ¢,,
where # is any integer. For two processes x(f) and y(r), a similar definition applies, the argu-
ments of p now being x;. v, and £ If two random functions are independent (e.g. they have no
causal connection) the probability factorizes into the product of a probability for x and a prob-
ability for y. The signs ( ) will indicate an ensemble average, i.e. an integral with respect to ¢
with p(¢) as a weighting factor.

The cross-covariance between x(¢) and y(¢) is

Cy(7) = (x(7)y(0)) (A1)
and Cy, (1) = Cy,(—7) because of stationarity. Thus C,(7) = C,(7) is an even function of T
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and the variance C,(0) is positive. Two random functions x(f) and y(t) are said to be uncorre-
lated if C,(7) = 0. This is the case if x and y are independent.
The cross-spectrum S, ( f ) is defined as the Fourier transform of the cross-covariance,

0

Ll = J Cy(7) exp(—2rif 7) dr (A2)

Since C,,(7) is real S,,(0) is real. We also have that 8,,(f ) = S[,(f ), where the star denotes
‘omplex conjugation, and thus S,(f ) =S.(f) is real. Obviously the cross-spectrum of
_ancorrelated processes vanishes.
It follows from the linearity property of C,,(7) with respect to x and y that

Suviby.cordy = A Sy +bd "8, + ad 'S, + b’ Sy, (A3)
where the argument f is omitted. In particular, setting @ = ¢ and b = d we have
Sacity =aa S, +bb™S, + ab*Sy, + a"bS}; (A4)

Since C,(0) is positive, the integral of S, over frequency from plus to minus infinity is positive.
If x(t) is the input to a linear system with impulse response A(¢), the output is

y(t) = l.:).'{a-}h{r —a)da (AS)
Multiplying both sides by x(r — 7) and averaging we obtain

Cy(7) = Ci(7) * h(7) (A6)
where the star (middle position) denotes a convolution, or, taking the Fourier transform of
Equation A6,

S, (f) =S.(fIH([) (A7)

here H( f ) is the Fourier transform of h(7), defined as in Equation A3,
If we now multiply both sides of Equation A5 by y(f + 7) and average we obtain analogously

S,(f) =Su(f)H (f) (A8)
Thus, from Equations A7 and AS,
S,(f)=S:(fIH(f)H(f) (A9)

If S.(f) were negative for some value of f we could find a narrowband filter of impulse
response /i(t) such that S,(f ) would be negative over the full frequency range, and its integral
would be negative, in contradiction with a previously established result. Thus the spectral
density of any function of time must be nonnegative.
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