2.0 Cireudls for Traveling Wave Crossed-Field Tubes
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In this section we consider typical types of delay lines that have been
nied or considered for use in Injection Type tubes. Actually, most of the
problems discussed are relevant to other types of tubes like the amplitron
wid i general, to all tubes using a traveling wave rather than a standing
wive, as in the magnetron. It is more difficult to obtain high rf voltages
with a traveling wave than with a standing wave, and one of the more
topent necessities is the search for high impedance struetures. On the other

hiund the high impedance circuits used in O-type tubes eannot easily be
47




48 J. ARNALUD

adapted to M-type tubes because they are (rail and eannot sustain the
heavy electron bombardment of the circuit characteristic of M-type tubes.

I. The Interdigital Line

A. GENERAL RELATIONS

The interdigital line consists of two identical “combs” the ‘‘fingers'” of
which are interlaced as shown in Fig. 1(a), From the point of view of the
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Fic. 1. Interdigital line. (a) In its practical shape the interdigital line is constituted
by two combs; (b) theoretically, it is a set of parallel bars alternatively short-
eircuited to ground and open eireuited.

bar line theory, it is a set of parallel bars of length d connected to the ground
alternatively at one end or the other (Fig. 1(b)).
We have the boundary conditions
Vi(d) = V3(0) = I,(d) = I,(0) = 0 (1

Using the relation (3) of the previous Section 2.2 by this author, leads to
the relation

cos fed 7 sin kdZs @
sin kdY cos kd|
or
YieYo
AR — =12_ 2
cos® kd VoiVar (3)
In the case where the combs are symmetrical one can show (1) that
Ied Y(e/2)
T2 =t 4
WY = Ve + 7 =
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i) 1w the characteristio admittance of the sysiem considered as structure
with one bar per cell. In the case where all the capacities may be neglected,
sxcopt hetween adjacent bars (v'), we have

-

Y(g) = 4_(:7'5in'3%'j (5)
ililll
kd ¢
e o g P
tan® 5 = tan® ¢ (6)
The first solution is
@ = 2kd (7)

Pl phase shift corresponds to the picture of a TEM wave flowing in
speng lashion between the combs at light veloeity.
I'rom relation (21) of Seetion 2.1 by this author, the delay factor of the
mth space harmonie will be
c 2d | m\
£z, m ®)
Uph P 4
tomembering that p is the distance between adjacent fingers of the same
vomb, and d the length of the fingers.

[+, (CHARACTERISTICS OF VARIOUS SPAcE IHARMONICS

In this paragraph we shall study the harmonics corresponding to
m o 0,m = —1,m = +1. Their dispersion curves are shown in I'ig. 2. The
more important of them is for m = — 1, which corresponds to a backward
wive and is used in the crossed-field backward wave oscillator. It is seen
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Y10, 2. Dispersion curve of an interdigital line, (a) Diagram [requency as a function
ul the phaseshift; (b) diagram: delay factor as a function of the wavelength.
m 0, forward antisvmmetric wave; m — —1, backward symmetric wave (carcino-
tron); m =1, forward symmetric wave. Without grounded plate the passband is from
v 2d fo N = eo (straight line curves); with a grounded plate near the fingers the
pshand is from A to A: (dotted line eurves).
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from I5q. (8) that the pass band is defined by 2d € A € = in fact, the
useful bandwidth is only 4d <N < 8d.

The harmonic m = 0 is a forward mode and the corresponding delay
factor is nearly constant. It could be used in forward amplifiers, but un-
fortunately it will be seen that its coupling impedance is zero at the middle
of the interdigital line. Since the m = 0 and the m = —1 harmonics have
the same range of phase velocities, such amplifiers would be very apt to
oscillate on the backward waves. However, some modifications can be
made which permit their use in an amplifier: essentially, the two combs
are made strongly dissimilar so that the backward wave disappears in the
regions where it could be harmful.

The m = 41 harmonic is also a forward wave, but the associated field
has the same distribution along the fingers as in the case form = —1. The
dispersion is not zero but can be made small if we use a ground plate near
the line (see Fig. 2(b), dotted line). The main trouble in its use in an ampli-
fier structure is the rather low value of its coupling impedance and the
great variation of it in the pass band. However, it has been used in the
early crossed-field amplifier.

(C. CourPLING IMPEDANCE

The simple results which follow relate to an interdigital line with fingers
of rectangular eross section and a field uniform in the gaps.

If U is the potential between adjacent bars, one obtains easily
2U sin [(a/2)(¢ + 2mx) /2] {cos kx, m odd ©)
P (a/2) (0 + 2mm)/2 sin kx, m even
(The origin of the x axis is assumed here to be the middle of the lin‘e.)
On the other hand, the interdigital line can be considered as a bifilar line
of characteristic admittance cy’. Then the power flowing is

P = jey'U? (10)

and the coupling impedance of the mth harmonic is

Ea =

cos kx\?
_ 2 ¢ {sin [(a/2) (e + 2mm) /212 (] ()
- Y /e (¢ + 2mm)? (a/2){ﬁ° + sz)/2 J sin ka

@®

So, form = —1 (backward wave space harmonic), and for ¢ = #(\ = 4d),
a = %,z =0, we have
0.6

L (12)
&4 9 & / €
and its mean value over the width d of the structure is
ol = 3:54 (13)

- ']""/fn
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Now, we also have
I p 14
Y/ 4k Q)
il we negleet the fringing fields. For A = 2p we have
M, = 0.067 (15)

1), Srecian CASES

I some cases, the picture of the wave traveling with a velocity ¢ be-
{woen the combs is not sufficiently aceurate, and it is necessary to return
(e the more general expression of the dispersion, Eq. (3).

| Interdigital Line with Ground Plate®

This case can be encountered when, at very low frequencies, it is im-
possible for a large distance between the body of the tube and the line to
sint or when we wigh to inerease the dispersion of the fundamental in
wrdder Lo decrease the dispersion of the wave m = + 1. Then, from (4),

eyt Tﬁ =Y + 44 sin® (¢/4) + --- (16)
TN T v+ 4y cost (p/4) + oo
whete 7o is the capacity between a finger and the ground, and v" is the
cnpncity between adjacent ﬁngers,
The effect of o is to decrease the pass band on the low and high fre-
quencies sides, so that the cutoff wavelengths A and Ma(p = 0, ¢ = 27),
nlwiys satisfy the relation

= — (17)

1
+ 2d

i o
>’lr—'

2 (use of Tape Fingers

Huch thin structures give high coupling impedances (but not theo_retical
mumum), and could be useful when the heat dissipation has no impor-
{unce. We make use of formula (21) of Section 2.2 by this author and (4)
ol this section and we obtain

tan® % = |tan ¢/4| (18)

\round ¢ = =, the dispersion of the fundamental is greater than prc‘vi-
oudly. One may be surprised to find for A = 2d an infinite group vclocn_;y
which is physically impossible; this arises because the bar line theory fails
i el cases, since it negleets the unavoidable perturbations at the end of
the fingers.

* 1. 2, dotted lines
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3. Case of a Small Geometrical Shift of One Comb with Respect to the
Other in the Direction of Propagation

In this case the interdigital line is no longer symmetrical and we must
return to the more general expression of the dispersion relation (3).

One can see that the shift involves a little stop band centered around
¢ = m; for a line of finite length one observes an increase of the VSWR at
the input of the line at X = 4d (in cold tests) and a jump of the starting
current (in O-type backward wave oscillators, in particular)(Z, 2).

If the drift is ¢, the stop band Af is found to be

Af 8 e
P (19)

Il. The Ladder Line

A. Main PropracaTion MopES

Let us consider an array of cylindrical conductors limited at z = —d
and z = 3d by perfectly conducting planes; then the bar line theory applies
exactly and leads to a fixed frequency condition

dkd = K, K integer (20)

Such a structure does not propagate in a finite pass band (one can say that
Poynting’s vector in the z direction is everywhere zero). On the contrary,
if we put a ground plate near the bars of a ladder, covering only part of
the length of the bars, the discontinuities at the edges of the plate permits
propagation (9).

We shall now consider the symmetric structure of Fig. 3. We can have

1l
-

Fic. 3. Ladder line with a grounded plate; only the symmetric wave is considered.
The origin of the coordinates is at the discontinuity brought by the grounded plate.

symmetrical modes for which the strueture ean be eut in its middle with-
out any important changes, and antisymmetrieal modes for which the
middle of the bars can be grounded without any important changes,
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. Let us consider the symmetrical modes. We have a two-sections system:
for <0, section I is shortened at & = —d; and of characteristic admit-
tance Y1; and for # > 0, section II is open at # = dy and of characteristic

admittance Y. The boundary conditions at x = 0 lead to the dispersion
condition.

—jYlcot kdy = —7Y" tan kd, (21)
)i
tan kd, tan kd, = yii (22)

T'he left-hand term is a function of A only, and the right-hand term a
function of ¢ only. If we take the capacities into consideration we have

4 3 (v)'sin? lg/2
tan kd, tan kd, = Bt (23)
o+ 427] (¥ sin’® le/2

and if we neglect all the capacities except ' and (v/)! and assume
I‘I'| = dg = d

s G hpran
tan® kd = sin? =~ y
an® f e sin’ 5 (24)

The low frequency solution corresponds to a forward wave (3) which is
used in crossed-field amplifiers. One may see from relation (24) that two
lines having the same capacities (which remain unchanged by an homothety
i i plane transverse to the bars) and the same d, must have the same @(\).
T'his is proved experimentally in Fig. 4 with good accuracy.
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B. Fiurer ANALOGY AND DISPERSION IMPROVEMENTS

If we make the assumptions leading to relation (24) in the previous
section, the ladder line structure can be represented by a  filter structure
(L, C) and one can apply the general result of relation (9) of Section 2.1
by this author, which shows that the dispersion would be only

von/tg = tan (¢/2)/¢/2 (25)

with purely capacitive or purely inductive reactances. In fact, we must
use distributed reactances, then v,1/v, is greater.

Furthermore, the previous assumption is not right because we have at
least one coupling capacity 7" which increases the dispersion. This harmful
capacity may be decreased by milling corrugations in the ground plate in
order to introduce screens between the bars. Practically, one can obtain
values of v/, less than 1.7 for L-band tubes.

C. CourLiNng IMPEDANCE

The present, computation of the magnitude of the space harmonics as-
sumes a constant field in the gaps. It is difficult to compute directly the
value of P; instead, we compute the value of the stored energy by relation
(5) of Section 2.2, and multiply it by v,. Then we have

a 1 sin ¢/2\? vpn [sin (a/2)¢)?
R = G/ {1+ @y /7" sin? \0/2}( ¢/2 ) P_ii'{ (a/2)¢ } o
26

The useful width of this line being I = 2d.

D. TaPE STRUCTURE

The computation of the tape structure is easy for infinitely small pitch.
Pierce (4) obtained for the dispersion the simple expression:

2
o o E— ] 27
tan kd, tan kd, 1T ooth (2b/2) I coth (2b/7) (27)

where b is the distance between the bars and the ground. A more accurate
expression is given by Butcher (5) for finite pitch.

E. Tae “T"” STRUCTURE

Often, for reasons due to heat expansion, the bars must be cut in their
middle. This measure modifies very little the dispersion of the symmetrical
mode, but the dispersion curve of the antisymmetrical mode comes then
very close to that of the symmetrical mode if the capacity between the end
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of the barg ig small (thig enpaeity is n true capacity and not, as previously,
woonpneity per anit length; it is greater for low delay factors). In prac-
fiew, 1L s necessary to inerease this eapacity to shift the antisymmetrical
mode away from the pass band of the tube, towards the lower frequen-
v Another possibility is to use the T-shaped bars as is shown in Fig.

A

151‘}"‘-“ = '

2 R

Field above the "T"

Vi b (2) 9T structure. (b) Such a structure could be used instead of a ladder
Jiie nfter the dispersion curve (1); an antisymmetric mode (2) can propagate. All
dimensons in millimeters,

i) loxperiments show that an antisymmetric mode still propagates, but
with o delay factor very different from that of the symmetric mode Fig.
Hih) It ean be eliminated by strapping of the two base-plates.

Il The Helix and the Vane Type Line

A 'I'ne Henix

' structure has been extensively studied, mainly for the O-type TWT.
1o npplication to crossed-field tubes involves many difficulties.

I'irit, the helix must have rectangular windings so as to show a planar
wirliee to the interaction space. Secondly, better cooling than in O-type
I'W'I' is neeessary. Finally, experiments show that the supports of the
holix are rapidly metallized and eventually short circuit the rf wave.
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One can alleviate partially these drawbacks by maintaiming each wind-
ing (Fig. 6) of the helix by a quarter-wavelength stub. An approximate
computation can be made in this case assuming that the only important

q

Ground

Fia. 6. Helix structure supported by stubs. 7' is the capacity per unit length between
adjucent turns of the helix, and d the length of a turn. v is the capacity per unmit
length between adjacent stubs and h their height; the backward propagation dis-
appears for h = d.

capacities are the capacity v’ between the adjacent rings, and the capacity
o between the adjacent stubs. Then the phase shift ¢ is given by

cos ¢ = cos kd + 2""7” cot kh sin kd (28)

where d is the total length of a winding and h is the height of the stubs.
This expression shows that it is possible to suppress the backward mode
(which is dangerous for the stability of the tube), if h = d. Then, the dis-
persion is greater than that of the free helix, but reasonable bandwidth
can still be obtained.

One more remark can be made about the dispersion of the free helix. If
we compute the dispersion curve of the free helix by the bar line theory,
the dispersion is found to be zero even if we take into account all the
capacities; in fact, the dispersion results from the coupling between oppo-
site parts of the windings. This coupling is greater when the rings have a
rectangular shape and should be suppressed by a screening plate inside the
helix.

B. T Vaxe Tyre Line

The vane type line consists of a set of rectangular parallel fins of height
1 and width [ short-circuited at their bottom by a conducting plane (Fig.
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1 For the main mode we have TEM waves propagating transversally
winide the vanes and a delayed wave above the vanes propagabing the

power. Such o structure 15 used in the magnetrons where the ciremt

{'ii 7. Vane type line. The pitch is p, the gap width ep. The electrie field varies

w1 sine wave in the vanes and exponentially above the structure (y >0); it is
woniied to be uniform along Oz.

oned on itself and operates as a cavity. Consequently, ’ic fiispermon of
{hin stracture has importance only as far as mode separation 1s c('mce‘rued.

A« 4 non-reentrant circuit, the vane line has very great dispersion if the
delay factor is high. Then, one can obtain a reasonable pass band (s.ay
107%) only for delay factors of about 2. This would involve sole-to-line

voltage of some 400 kv. ) -

I'he dispersion can be decreased by creating a}.ma,gnetlc‘ coupling be-
{ween adjacent vanes; one can introduce a ca,pa('}twe coupling to a plate
al the upper end of the vanes but the structure 1s then very near to the

lielder structure previously discussed. . ' .
I"or small pitch, the dispersion curve is easily obtained by matching the
1M wave in the vanes and the delayed wave about them; we have

¢/vpn = V1 + (o tan kh)? (29)
‘I'he dispersion is a minimum when the vane thickness is zero; then,
¢/vpn = 1/cos kh (30)

O the other hand, the coupling impedance is nearly independent of o and
ol the frequency ; then one has, approximately,

®~2 (31)
I conclusion, the vane line seems to be of interest only in the case of very

high peak powers; it has the advantages of a high dissipation and a good
uniformity of the field.
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IV. A Biperiodic Structure: The Multiple Interdigital Line

We shall apply the general relation (12) from Section 2.2, by this author,
to a particular structure, called the multiple interdigital line (¢). We can
consider it as a set of infinite parallel bars in the same plane above a ground
plate. The bars are periodically grounded, as shown in Fig. 8(b). When all

N |

%

Tia. 8. Biperiodic interdigital line. (a) Reference cell (black points indicate that
this end of the bar is grounded). (b) Two dimensional array with periods p, and ps.
(c) Curves relating qu and s at a given wavelength. The projections of g upon
p1 and ps are gu/ps and qaf pe.

sections of one bar arc excited in phase by an rf source, the infinite struc-
ture behaves as a simple interdigital line, for this current is zero at the
middle between two adjacent grounded points of a bar, and one can cut
the structure perpendicularly to the bars at these points without modify-
ing propagation. But in the general case it is not so, and the dispersion
must be caleulated with relation (12) from Section 2.2. We have one
pitch p; only in the direction normal to the bars (p, = «), but we have
another fundamental phase shift, ¢z in the z direction. In the case where pi
and p; are not perpendicular, use of the concept of reciprocal lattice after
L. Brillouin (?) must be made.

Considering the fundamental cell shown in Fig. 8(a) we see that we have
to apply relation (12) of Section 2.2 once for the section d; and once for
the section d;. Then the cigenvalue of the matrix, relating the input to the
output current and voltage, is equal to 2 cos ¢s. We shall write the dis-
persion equation in a very simple case when we take account of only the
capacity between two adjacent bars, and when d; = ds = d; then,
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W1
cos kd = cos 5 Cos |

F

t

For oo given frequency (for a given k) we obtain a relation between ¢ and
vo which is shown in Pig. 8(c). A “plane wave” is defined by its propagation
constants g1 = ¢i/pr and Bs = ¢3/ps. Generally the array is limited in the
v direetion. For instance, we have reflecting planes, normal to the bars,
imeluding between them n cells in the p; direetion. Then, the condition

nes = Kr K integer

involves a relationship between ¢ and o, and the structure behaves as a
uniperiodie one for each value of K.

V. The Infinitely Thin Zigzag Line

This structure is the complementary of the infinitely thin interdigital
line (in the sense of the Babinet’s principle) and its parameters are easily
deduced from the parameters of the interdigital line (Eq. (18), Figs. 1 and
)

l.et us assume that the zigzag line is supported by a dielectric of constant
« and of infinite extent in the negative y direction. Such a strueture could
bie nsed theoretically for an M-type amplifier (8). The inhomogeneity of
the medium should invelve E: and H, components, but they can be neg-
loeted if one restricts oneself to delay factors high before 1. Then, the
dispersion eurve is given by

L _ X
Vo 2wD @
ol _ oo kd
tan 4|~ tan B
il we put b
S B S -
d =d )
:lTI'l
EE*kd 2 8 sin (e/4) kd’

- 28 PV /e T 1+ € ¢ (2/sin kd’) — sin kd’

In the case where a ground plate supports the dielectric, the thickness
of the dielectric being a, it is possible to cool the zigzag line by the trans-
mnission of heat through the dieleetrie; in this case ¢ becomes approximately
(pa<<1):

o= 2kd ‘\/e
and the coupling impedance
1 8sin® (¢/4) e

&= \/e ¥ o
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o being the capacity per unit length between the wire of the zigzag line
and the ground plate; neglecting fringing fields one has

Yo _  (a— Dp/2

o a
A zigzag line could also be supported by quarter-wavelength stubs as indi-
cated in Fig. 6 for the helix.

VI. Main Parameters of the Interdigital Line, Half Ladder Line,
and Vane Type Line

A. INTRODUCTION

A knowledge of the output power, gain, efficiency, and bandwidth of a
tube permits the approximate determination of the following parameters
of the delay structure.

1. The delay factor r = ¢/vpn = B/k.

2. The mean coupling impedance &' = E,Enkl/26'P.

E,, is determined from the mth space harmonic of the electric field com-
ponent directed along Oz, for y = 0 and averaged over the width ! of the
line, the power flow in the structure being P.

3. The dispersion factor vyu/Ve.

Three scalings of the delay structures are possible; the first two are
obvious but the third holds only for bar type structures (interdigital lines
and ladder lines, in particular).

(a) Scaling in width: if many identical structures are used in parallel to
increase the width of the beam, &’ is the same.

(b) Sealing in wavelength: all dimensions are multiplied by the ratio of
the wavelength A/Aq; then, 7, ®', vpi/v, Temain constant, the attenuation
per delayed wavelength is multiplied by V2o/A. Ao, 7o denote operating
wavelength and delay factor of a given line, respectively. A and 7 denote
the operating wavelength and delay factor of the scaled line.

(¢) Scaling in delay factor: all dimensions perpendicular to the bar
direction are multiplied by the reverse of the ratio 7/ of delay factors
without any change in the Oz direction; ®" and vyn/ve remain constant.
The attenuation per delayed wavelength is' multiplied by /7.

Three structures will be reviewed in the next paragraphs: the inter-
digital line, the half ladder line, and the vane type line, which are the more
commonly used in M-type traveling wave tubes.

B. Tae INTERDIGITAL LINE

This structure is used mainly for backward wave oscillators or amplifiers
on the space harmonic m = —1.

2.8 CIReUITs FOR CROSSED-FIELD TUBES Gl

A lp - -)r_i__"_?’.’
Op ¥ M=

(33)
pin the distance between two corresponding points of the same comb, d
i the length of a finger, and ¢ = 2kd, the fundamental phase shift. The
group velocily 1s given i)y

c/ve = 2d/p (34)

Cienerally, the voltage of a carcinotron is varied less than by the ratio
11 1o avoid too severe variations of the applied power; then the electronic
bind is

Af 2w —
I 37

(35)

\ wide clectronie tuning band implies ¢ = 2kd < 2. In the case where the
line is comprised of two combs, it is best to avoid the wavelength
\ - dd(¢ = ), which corresponds often to a small stop band.

X /2h
= 1+ 0.5(p/2h)

I heing the height of the fingers and

7 - 22 sin ¢/4)? [sin (2r — o/8)?
Flo) = Gr = sv)z( /4 ) { @r — ¢/8) (37)

®’ Fp) (36)

Hioe Table T for results.

TABLE 1

20d 0 0.2 0.4r 0.6 0.87 s 127r ld4x 16+ 18c 2r
Fig) 0 0016 0041 0079 014 024 042 079 115 57 ©

In Eq. (36) it is assumed that the gap between adjacent fingers
ap/? = p/4. Equation (36) becomes inaccurate for high values of p/2h.
Ii the capacity per unit length between adjacent fingers v’ is known, the
term 2ep/v" has to be used instead of

/2h
1 + 0.5(p/2h)

Tnble I11 can be used, but it may be noticed that the pitch of the inter-
hgital line is twice the pitch used in this table.

The thermal dissipation power of the structure made of copper, with a
maximum temperature of 750°C and with a useful length L’ (in meters) is

Py =3 X 10"'};’3 (38)
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The attenuation per delayed wavelength A of such a line, at 7' = 30°C, is
(A in meters)

y N @ T o
St = 31 X 10 *m :’_X (39)

C. Tt Havr LappER LINE

This structure is used at the fundamental m = 0 in the forward wave
amplifiers and on the space harmonic (m = —1) for backward wave
oscillators. The delay factor is

l¢ + 2mm| (40)

T =0
_a'll"p

¢ being obtained from

¥1 sin tp/2 41
V1 + v sin? (¢/2) &

if dy = d» = d is the half-length of a bar, and with

tan kd =

4‘?”/*0

. A 42

¥ '}’{I)I/EO ( )
4411 /g -

b i 43

W= e e

yoand 7" can be obtained from Table IIL. The index I refers to the grounded
end of the bars and the index II to the opened end of the bars.

1 sin w/2)“ (sin kd)’ Vph gy
Fios 6 41
& = Tl + v st (o/2)} ( |9\ | n” O

vpn/ve has to be deduced from (4 1). 62 is a space harmonic decomposition
factor which is given for m = 0 in particular cases in Table 1TII. When the
ground plate is smooth, the following expression can be used

§ = sin [% (¢ + zm)] / g (¢ + 2mn) (45)

ap being the gap between adjacent fingers.
Let us consider the simplest case where »? = 0 and kd << 1; the lumped

circuit theory applies with

d

= W It
L = CET” (; = ¥
. ¢ kd
Bl 75 =
2 n

vpn _ tan ef2
Vg a e/2
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!
1] T

L ity (SR
Tn/ﬁufl(“n}( ,hf )ﬂ’

Gl = (L2 o (2 02)

Hee Table 11 for results.

with

TABLE II

Wil [ vy 0 0l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
v/ 0 0063 0128 019 026 033 041 049 059 071 1
(O [T 1 1 1.03 1.06 1.09 116 126 145 184 oo
Gled 0 0.2 0.4 0.61 082 103 120 158 2 2.6 =

['sunl values for this type of structure are ¢ = /2, 7 = \/4p, vpu/ve = 2,
and @t = 0.1 to 0.2 in 159, bandwidth.

T'o increase the width of such a line it is possible to put two or more
slruetures in parallel. This led to the T-line, and the x-line or the double
I"line. In a first approximation 7, vpn/vg and ®' are the same as for the
half ladder line.

). ToE VanNE Type LINE

This structure has a small bandwidth, except for very low delay factors,
il it is used as a forward wave structure (m = 0). Then, for infinitely thin
vines and small pitch,
7 = 1/cos kh

h being the height of the vanes. Such a structure propagates from X = 4k
ln A = w, for the lower pass band. The width can be increased arbitrarily
except for the problem of multimoding. For usual delay factors,

L | + 2.57
Vg
nnd R == 2.

[%. ExpERIMENTAL REsurrs ror THE CapaciTies PER UNIT
Lexcra AND THE Srace Harmonic DecomposiTioNn FacTor 6

An analog method can be used, the shape of the cross section of the
birs being sketched on a conductive paper.

The Ymn capacity is given by the current flowing from the mth bar into
the ground, the nth bar being at the potential + 1 and all the others being
connected to the ground.

To determine 6, it is sufficient to connect one bar at the potential +1,
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TABLE III

T

a(x)

#(0)

=l

o

Line

0.6«
AN

4f
+ls'm

9(0.67)

Ei)

no.

7.8
6.6
6.9
7.2
6.6

4.7

0.69

0.7
0.67
0.67

0.95
0.5

1.8

0.87
0.55
0.26

5.5
5.2

0.45

0.5
0.5

0.075

0.25

— 0

0.63
0.67
0.63

0.84

0.72
0.5

0.15
0.15

0.25

0.125
—0.075

o

. ARNAUD

6.2
7.1

0.5

0.375

0.5
0.5

=

6.5
87

0.08
0.55
0.27
0.82 0.91

5.2
58
6.6

0.5

0.4
0.4
0.8
0.4
0.8

0.15
0.15
0.15
0.15

0.57
0.5

02
0
0.4

0.6
0.6
0.6

W W =0

88
10.9

0.83

1.4

6.6
7.2

0.1

0.6
0.6

0.95

0.1

10
11

3.3

0.2

0.5

e
il

0.98

2.1

0.5

0.5
0.5

12
13
14
15

il

53

0.5
0.5

0.25
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(e others being at the ground. With the potential V(z) at the upper level
ol the strueture, 0 is obtained from

u
b(¢) = "_IKE‘TZ ﬂ; Vi(z) cos ¢ ?—j dz
Hince V(z2) decreases rapidly with 2, three of four cells are sufficient.
erides, the bars are generally symmetrical and the paper can be cut at
the middle of the bar which is at the potent.ial +1.

It may be noticed that limg, g 0(¢) is not unity, in general. If the field
with u potential distribution V, = e®/?e=m¢ is E(z, ¢)

4
f E(z, @)ei#i? dz
0

llm (p) = lim _1_
g #0207 sin /2

. [POE 1 [r
= — —(z,0)dz + = E(z, 0
i [0ty [ e 0z e

This limit is unity in the cases deseribed in Section 2.2 on the “Theory of
Iar Lines” by this author; it is 3 in the case of a corrugated ground reaching
ihe upper level of the bars.

I various cases 8(¢), vo (capacity per unit length between a bar and the
wronnd), and 4* (capacity per unit length between two adjacent bars) have
lwen determined by this method.

¥y

Y
NIV 2

\\
AL

&

/ { g /L'l
\

1] 1 >
BRI BTN BN

- ._.i__,_,

T1a. 9. Bar lines with corrugated ground plate.

I1 Table III the dimensions refer to Fig. 9. The last column gives the

l|ll|l|l|i,t..‘|.'
(Ig 4 4_7_) sin? @
€ € 2
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for a commonly used value of the phase shift ¢ = 0.6m; this quantity is
proportional to the characteristic admittance of the strueture. (All symbols
used in the table are dimensionless, the dimensions a, b, . . . being referred
to a pitch of unity.)

List of Symbols

f frequency

¢ velocity of light

w angular frequency

k(= w/c) propagation constant
rx(=z¢/D) free space wavelength

€ vacuum permittivity

o vacuum permeability

Vo phase velocity

B delayed propagation constant

pii=13),p pitch or periodicity of line
¢i(i=1,3), ¢ (= p) fundamental phase shift
0,7 = B/k = ¢/vpn delay factor

v = pdw/de group velocity

I line width or integer
r rf power

W stored energy

i) electric field

®, R coupling impedance

mean coupling impedance
a, b distances in Oy direction

¢ thickness of screening plates

u potential between adjacent bars

d length of bars

Vv potential

I current

h height of fingers or of stubs

o space harmonic decomposition factor

b diameter of wire or bar

l,m,n, K integers

L' length of a line

[| ¥ szl | generalized characteristic admittance

[|Ze,z!] generalized characteristic impedance

Y capacity per unit length between adjacent fingers
o ratio of the gap width to the pitch (ladder line,

vane line). Ratio of the gap width to the half
pitch (interdigital line)
b attenuation
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relntive dielectrie constant or small distance
modified length of a bar

sell induetance

capacitance
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