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Abstract

In 1824 Camot established that the efficiency of cyclic engines operating
between a hot bath at absolute temperature Tj,,, and a bath at alower temperature
Teota cannot exceed 1 — Tepa/ Thor. We show that linear oscillators alternately
in contact with hot and cold baths obey this principle in the quantum as well
as classical regime. The expression of the work performed is derived from a
simple prescription. Reversible and non-reversible cycles are illustrated. The
paper begins with historical considerations and is essentially self-contained.

1. Introduction

The purpose of this paper is to apply Carnot cycles to linear oscillators in the quantum regime
rather than to gas-filled cylinders as is done in most thermodynamics text-books. Of course the
forces involved in such systems are tiny at normal temperatures. But it is instructive to verify
for such a simple model that the average work performed per cycle is accurately given by the
Carnot principle. Because the system is small, the work performed may fluctuate significantly
from cycle to cycle. We thus distinguish deterministic (italic letters) and fluctuating (roman
letters) quantities, Readers interested only in average quantities, in particular on the average
work performed per cycle. need not distinguish roman and italic letters.

The paper is essentially self-contained. It is hoped that the readers will find useful
our concise presentation and illustration of the relevant laws of thermmodynamics. statistical
mechanics, and quantum theory, introduced in a heuristic manner, essentially in the order in
which they were discovered. Anticipation of modern formulations is avoided. We mainly
consider system energies and set aside quantities that are not strictly required, in particular
system entropies and temperatures. If the system consists of many independent oscillators
their contributions (means and variances) add up. This is the rule of extensivity as it pertains
to the present discussion®.

5 The energy and entropy of optical fields in large cavities in contact with a bath are often taken as proportional to
the cavity volume. But this is so only approximately in the limit where the cavily volume goes lo infinity,
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Let us first attempt to summarize the subtle reasonings that enabled Sadi Carnot carly
in the 19th century to prove that the maximum efficiency of any heat engine is given by the
formula ne = 1—Teata/ Thors Where Teordy Thor are the absolute temperatures of the cold and hot
heat reservoirs, respectively. This achievement was made with few empirical results available.
Indeed. as Carnot calculated it, the efficiencies of heat engines fabricated at the time were, at
best, only 5% of the maximum efficiency 5c. so that observations did not provide any hint
as to the value of the maximum efficiency attainable. It was well known, however, that heat
never flows from cold to hot bodies spontaneously. Only heat pumps, which require a supply
of mechanical or electrical energy, may reverse the natural heat-flow direction. In the above
formula, the efficiency is defined as the ratio of the average work AW performed by the heat
engine per cycle, for example through the lifting of a weight, and the upper reservoir average
energy loss —A Ons®. The hot reservoir may consist of the liquid and vapour phases of a
substance in a state of equilibrium. The observed change in the quantity of liquid provides
a way of measuring AQpy. Likewise the cold reservoir may consist of a substance in solid
and liquid forms. In these examples, the temperatures of the hot and cold reservoirs do not
vary much even when significant amounts of heat are added to them or removed. The absolute
temperature T = 7'(#) is a monotonic function of measured temperature #. The relation
between absolute and measured temperatures may be found, e.g..in [1. 2])7. Carnot considered
that absolute temperatures are obtained by adding 267 to thermometer readings expressed in
degrees Celsius, instead of the currently accepted value of 273.15[3]1p 67. [4] p 211.

Carnot first proved that engines attain their highest efficiencies when they are reversible.
To explain what ‘reversible’ means, let us suppose that the heat engine generates a work AW,
with the hot bath losing some amount of heat and the cold bath gaining some. If the engine is
reversible the initial bath heat contents get restored when the energy AW is fed in, in which
case the system is called a heat pump. If the work performed by a reversible heat engine of
efficiency n is employed to drive an identical engine in the reversed mode, the heat engine-heat
pump assembly does not generate any net work. There is no net heat consumption either, so
that the assembly may go on for ever, ideally.

It is not possible for a heat engine to have an efficiency greater than the efficiency n of
reversible systems. Indeed, such a hypothetical heat engine operating with the same heat baths
as before and with the same heat consumption would generate a work exceeding AW. If this
heat engine were employed to drive the previously considered heat pump, the hypothetical-
heat-engine/heat-pump assembly would perform positive work while the bath heat contents
would remain the same. Energy would then be obtained for free, in violation of the law of
conservation of energy. The above considerations apply of course also to purely mechanical
systems such as water mills, whose efficiency, ideally, is unity. It is of historical interest that
water mill reversibility was studied by Lazare Carnot (Sadi Carnot’s father).

Carnot employed a mechanical analogy. Let us quote from his book [3].onp 28: “Thereis
some justification in the comparison between the motive powerofheat and that of a waterfall. . .
which depends on its height and the quantity of liquid. The motive power of heat depends
also on the quantity of entropy used and what one could designate. .. as the height of its
fall. i.e.. the difference of temperature between the bodies exchanging entropy’. We have
translated ‘calorique’ to entropy. following the observation made by Zemansky [51%. In notes
published after his death in 1832, but probably written at the time his book was being published,

6 The minus sign is introduced for later convenience: amounts of heat are defined as positive when they are added
to the baths. Likewise, entropies are defined as positive when they are produced.

7 From a practical standpoint. absolute temperatures may be taken as proportional to the volume of a gas such as
helium at atmospheric pressure, except at very low and very high temperatures.

§ ‘Carnot used ‘chaleur’ when referring 1o heat in general. But when referring to the motive power of heat that is
brought about when heal enters at high temperature and leaves at low temperature, he uses the expression ‘chute de
calorique’. never ‘chute de chaleur’. It is the opinion of a few scientists that Camot had in the back of his mind the
concept of entropy, for which he reserved the term of calorique. This seems incredible, and yet it is a remarkable
circumstance that, if the expression ‘chute de calorique” is translated fall of entropy. objections raised against Carnot’s
work [. . .] become unfounded’. This quotation from Zemansky has been slightly abbreviated for the sake of clarity.
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Figure 1. Water-fall picture of Carnot cycles for a system alternately in contact with hot and cold
baths, pictured as reservoirs at altitudes Tho and Tipq. respectively, above a lake. If the eycle is
reversible, the amount of water flowing from the upper reservoir to the lake is equal to the amount
of water pumped from the lake to the lower reservoir. In that case the Carnot efficiency may be
attained, ASpor and AS..i4 represent the entropies produced in the two baths.

(This figure is in colour only in the electronic version)

Carnot points out that heat is equivalent to energy”, and calculates on the basis of imprecise
experimental observations that 1 calorie of heat is equivalent to 3.27 J of energy. instead of
4.184 J [4], p 195.

The Carnot analogy is illustrated in figure 1. Consider a reservoir at altitude T}, above a
lake. If some water weight — AS;,,, flows from the reservoir to the lake the work performed
is —AQpo = =T ASse. Consider another reservoir at a lower altitude Tpp2. In order 10
pump a water weight AS.ys from the lake to the reservoir a work Teoa AS,p1q is needed. The
net work performed AW = —Tjior AShor — Trota AScors may fluctuate from cycle to cycle. The
efficiency is defined as the ratio of the average work performed and the average consumption
of heat from the hot bath: 7 = —AW/AQuo = 1 + TeotaAScota/ Thot ASher. The limiting
Carnot efficiency quoted above is obtained if AShq + ASqe = 0, that is, if the average amount
of water lost by the upper reservoir ends up in the lower one.

To conclude that the efficiency may not exceed ¢ = 1 — Tiota/ Ther. ONE must prove
that the total average bath entropy produced never decreases: thatis, AScoy + ASp 2 0. A
concise argument is as follows. In the case of heat pumps we have: AS;,; 2> Oand ASp4 < 0.
Let us consider the special case for which Teora AScot + Thor ASker = 0, in which case no work
is involved (AW = 0). This relation implies that AS.is + ASker < 0, since Thor 2 Toota,
opposite to the one we wish to prove. But the situation just described does not occur because
heat never flows from cold to hot baths spontaneously, according to observation. The general
result follows from the fact that the temperatures may be specified arbitrarily. In the water mill
model the condition established by Camnot for heat engines would imply that the amount of
water in the lake does not increase. For purely mechanical systems such as water mills there
is of course no reason why this condition should hold. Let us also emphasize that the analogy
does not imply that there is any physical connection between temperature and height on the
one hand, or between entropy and weight on the other hand. Yet. the analogy played a crucial
role in the Carnot discovery and remains useful for illustrative purposes.

To summarize: if the entropies produced in the hot and cold baths ASxor = 8 AQpar/ Theu
and ASeos = 8 AQeoa/ Tooa can be evaluated, the work performed by the engine

AW = —AQhor — AQcota (D

9 *Heat is nothing but motive power or rather another form of motion. Wherever motive power is destroyed, heat is
generated in precise proportion to the quantity of motive power destroyed: conversely, wherever heat is destroyed.
motive power is generated’. Note that Camot employs here the word “chaleur’ (heat). not "calorique’ (entropy).
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is readily obtained since the bath temperatures are known. This work may fluctuate. We are
mostly interested in its average value AW, The efficiency
AQeoid = Teott ASeota @
A Qhof T:‘mf A Sfao.l

reaches the Carnot efficiency when the cycle is reversible, that is, when the total average bath
entropy produced per cycle ASy, + ASqoq vanishes.

Two seemingly independent entities were considered above, namely the absolute
temperature T of a bath, analogous to a reservoir height, and a state function S, called
entropy, analogous to the total weight of water contained in a reservoir. To proceed further,
we need to introduce another state function, namely the energy Uy, contained in the bath.
It is plausible that S be some function of Upuy, since both are state functions and no other
parameter is presently involved. If an amount of heat AQ < Upgyy is added, the bath energy
gets incremented by AUpar = AQ, according to the law of equivalence of heat and energy.
The bath entropy gets incremented by AS = BAQ = B AUpuy, if the inverse bath temperature
B = 1/T is introduced.

Carnot explained how reversible heat engines could be constructed: he first observed
that two bodies should be put into thermal contact only if their temperatures almost coincide.
Reversible transformations must be quasi-static, that is, close to an equilibrium state at every
instant. As a consequence, ideal heat engines, while efficient, are slow. Reversible heat
engines involve four steps, two of them with the system being isolated from the baths (adiabatic
transformations), and two of them with the system being in contact with either the hot or the cold
baths (isothermal transformations). These four steps will be discussed in detail in subsequent
sections.

In the 19th century only systems involving many microscopic degrees of freedom, such as
gas-filled cylinders terminated by movable pistons, were considered. We discuss here instead
single-mode oscillators that possess a single degree of freedom, the phase of the oscillation
being ignored. The conditions under which the cycle should be considered reversible will
need clarification. Carnot cycles involving oscillators were discussed before (see [6]. and
the references therein). Small mechanical systems have been considered, e.g., in [7], and
the statistical mechanical properties of small electronic systems are discussed, e.g., in [8].
The forces involved in single-mode oscillators are tiny. But rotating—vibrating molecules and
biological systems submitted to baths at different temperatures may retrieve energy through
Carnot cycles or related devices [9].

The general expression of the work performed by a system in contact with a bath when its
parameter varies [10]is recalled in section 2. 1tis shownin section 3 that for linear oscillators at
frequency «w the Carnot result amounts to asserting that the average oscillator action, f(x),isa
decreasing function of x = fw, where £ denotes the bath inverse temperature. The properties
of Carnot cycles for oscillators are discussed in section4. The explicit formof f(x) is obtained
in section 5 from a simple prescription. The average work AW performed per cycle and the
efficiency n are illustrated for reversible and non-reversible cycles in section 6.

Szilard noted in 1925 that ‘exploitation of the fluctuation phenomena will not lead to the
construction of a perpetual mobile of the second kind’ [11]. It may be shown on the basis of the
Boltzmann formulation that the variance as well as the average value of the entropy produced
vanishes when the reversibility conditions are fulfilled. in agreement with that quotation.

The Bolizmann constant kg, set equal to unity for brevity, is restored in numerical
applications. The angular frequency wis called *frequency” for short, Planck’s constant divided
by 2m, f, is called ‘Planck’s constant’, and the action divided by 27, namely f = U/w, is
called ‘action’.

n=1+

2. Work performed by a system in contact with a bath

Let a system depending on a parameter  (perhaps the system volume) interact weakly with a
bath. Some energy flows between the bath and the system. Eventually a state of equilibrium is
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reached. The system average energy. denoted U (w, 8), depends on e and on the bath inverse
temperature f.

If the parameter varies by dw, the elementary average work d W performed by the system
is written as dW = —f dw, where f is a generalized force!?, If w represents the volume
of a gas-filled enclosure, — f represents the gas pressure. If @ represents an oscillator
frequency, f represents the oscillator action. Purely mechanical considerations, such as the
law of conservation of momentum, often enable one to evaluate the generalized force as some
function f(w, U) of w and the average system energy U. Considering U as a function of « and
temperature reciprocal §, as said above, we may view f as a function of w and 8 according to
flw, B) = flw, Ulw, B)). In the present paper the parameter o is supposed to be prescribed
from the outside, that is, it is not subjected to fluctuations. Bath temperatures are of course
fixed quantities.

The fact that the bath entropy § is a state function restricts admissible functions U (e, ).
Indeed, the bath entropy increment S = AdQ = —(dW +dU) = 8(f dw — dU), if the
law of conservation of energy (dQ + dW + dU = 0) and the definition of [ are introduced.
d S may be expressed as

U au
dS:ﬁ(f -—E)dw—ﬂ—éﬁ-dﬁ. 3)

Because dS is a total differential, the derivative with respect to w of the term that multiplies
dp must be equal to the derivative with respect to g of the term that multiplies de. After
simplification, we obtain

W _ B(Br)

dw 9B

Since dW = — fdw, the work AWicotherma performed by the system in contact with the
bath when the parameter varies from w;y 10 Wy, is given by

o

BA Wf'so:»‘:erma-'w) = ‘ﬂ f(w‘s ﬁ}d‘o = ‘p(wimﬂ) == ‘f’(wom‘. ﬂ) (5)

LTS

4

where we have defined
¢lw,. B) = .Bf fle, Brde. (6)

The work produced may be considered as a non-fluctuating quantity provided the process is
sufficiently slow [17].

3. Linear oscillators

For concreteness, let us consider an inductance—capacitance £-C circuit resonating at angular
frequency e, as shown in figures 2(a) and (b), and begin with purely mechanical-electrical
considerations. The electrical charges on the capacitor plates oscillate sinusoidally in the
course of time. The resonator is initially neutral. so that the electric charge appearing on
one plate is opposite to the electrical charge appearing on the other plate, and the plates
always attract each other. It follows from the Coulomb law that the average force F = U/2a,
where a denote the plate separation, and U the resonator energy. If @ is incremented by
da slowly so that the oscillation remains almost sinusoidal, the elementary work performed
by the oscillator is dW = —Fda = Uda/2a. On the other hand, it follows from the
well known resonance condition £€w? = 1 and the fact that C  1/a. where x denotes
proportionality, that 2dw/w = da/a. The elementary work may therefore be written as
dW = —(U/w)dw = —f dw, where we have introduced the generalized force f = Ufw. Tt

19 The notations d W or d  are not meant to imply that these quantities are total differentials.
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Figure 2. An [£-C single-mode oscillator. The figure shows cycles in the temperature versus
oscillator entropy diagram for the case where They = 1 and ?1:91,1 =1/4, oy = 1, 02 = 1/4,
w1 = ¢/2. wy = 2. (a) Reversible cycle, ¢ = 1. (b) Non-reversible cycle, ¢ = 2. The horizontal
arrows give the average entropies produced in the cold (lower) and hot (upper) baths.

ies slightly when a is incremented by da. but this variation c_tncs not affect
?\?\?tgeﬁtrf;flolnji;: r:\ccoraing);y. the above discussion holds both for i_suia!ed oscﬂla'mrs‘and for
oscillators in contact with a bath, even though U Vatr,ifejs differently in these two situations. If

ctuates, the average values are related by [ = U/w.

- ﬂu‘;;::n the system is isolated. i.e. nor in contact with a heat bath, we have'a’Q = () and
thus dU + dW = 0. According to the previous expression of dW the oscillator energy
gets incremented by dU = (U/w)dw. It follows that v_.fhep the resonant ﬁ}quency of an
isolated oscillator varies slowly, the ratio U/ew. called “action _.doe; not vary s:gmﬁcamly. In
other words, the generalized force f = U/w is constant in a@a_banc processes in the case of
oscillators'!. The variation of U with @ when the oscillator is in contact with a bath will be

discussed later. ' it
Replacing U in (4) by wf . we obtain after simplification

S %
e ap
1 More formally. the Hamiltonian H(g. p.t) = $[p* + 0*(1)g?] for a non-relativistic particle of mass m = lin a

i (1)x2 = = —w*(r)q from the Hamiltonian equations. A
tential well Vix.r) = @?(f)x2/2. We have dgq/di = p,dp/di = —0*()g !
sp:aishtfonwa:d derivation shows that ;’;‘;[H(q{t). plr) 1) fe(1)] = 0, if we take into account the fact that the average

kinelic energy is equal 1o the average potential energy: (p* — w?¢%) =0.
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a relation that entails that f is a function of In(w) + In(B) = In(Bw) only. This is essentially
the displacement law discovered by Wien in 1893 [12]: bl ackbody spectra scale in frequency
in proportion to temperature'2.

Since f is a function of fw = x only, the ¢-function defined in (6) may be written as

¢, B) ﬂﬁf J(@ B)de = f S dx' = ¢(x). (8)

4. The Carnot cycle

Let us first consider the adiabatic processes. Let U, denote the oscillator energy when it is
separated from the hot bath. If the frequency is changed slowly from w, to w3, we have

Wy
Uy = —U; = wafy, 9)
&y
since isolated oscillator energies are proportional to frequency. Likewise,
o, :
U_.; = ——4U3 = wﬂ;;. (IO)
w3

Using the results (5), (6), (8)~(10), the entropies produced in the hot and cold baths read
respectively
ﬁfrof AQhor = ﬁho:{U‘I o UI T Wl'sa!hermﬁf{ﬁhof)} = (ﬂ.‘lfs = ¢(ﬂ4)} =" (alfl = ‘p(ﬂl)] {1 l)
and
Beotd AQcota = Beota(Uz ~ Us = Wisorermar (Beota)) = (a2fy — ¢ (@) — (asfs — $(as)),
(12)
where we have defined
a; = Browy, a = By, az = Peogws, ay = Buorwy. (13)
The above expressions of the AQ follow simply from the law of conservation of energy. Recall
that in these expressions Wi, hermat is 2 non-fluctuating quantity.
The average entropies produced are obtained by replacing in (11) and (12) £, by f(ay)
and f3 by f(az):
Brot A Qnor = slay, ay) —s(ap)
Beota AQeos = slay, ay) — s(az),
where we have introduced a function of two variables

six, :\‘-'_} = .tf{_\-} —d(x) = t'f(\) _f f{x:}d_t’. as)

(14)

'2 The average oscillator energy U is equal to wf (Bw), where f{x) is a function of a single variable to be specified
later. The blackbody radiation spectral density is obtained by multiplying U by the electromagnetic mode density. In
the case of a cavity of large volume V, a mode count shows that the number of modes whose frequency is between o
and © + de is equal o Ve do/7? ¢*. Thus the radiation spectral density is proportional to Ve® f(e/T). If T is
multiplied by some constant a, the spectrum therefore needs only be rescaled frequency-wise by the same factor a.
Provided the integral converges, the total blackbody radiation energy density u, obtained by integrating the previous
expression over frequency and dividing by V, reads u = a T, where the Stefan-Boltzmann constant & is obtained
from measurement. Historically. the Wien displacement law was obtained through quite a different route. First,
Kirchhoff in 1860 established that the radiation energy density « in a cavity of large volume V is a function of
temperature 7" only. Maxwell proved that the pressure exerted by a plane wave on a perfectly reflecting mirror is
equal to the wave energy density «, a result which, incidentally, holds for any isotropic non-dispersive wave, see,
e.g., [13]. If we take into account the fact that the direction of the incident wave is randomly and uniformly distributed,
the radiation pressure reads in three dimensions: P = u/3. Boltzmann employed the laws of thermodynamics and
established that u o 7. This conclusion readily follows from (4) of the present paper with the substitutions: & — V,
f = —P = —u(T)/3. Finally, Wien in 1893 observed that the light reflected from a slowly moving piston is
frequency shifted, and enforced conditions for the radiation spectrum to be at equilibrium. The Wien reasoning is
notoriously difficult. Interested readers will find the details in [14]. For a multimode treatment see, ¢.g.. [15].



and s(x) = s(x, x). Note for later use that the function s (x, y) is unaffected by the addition
of a constant to f. We further observe that s(x, y) — s(y) = 0if f is a decreasing function of
its argument. We will later show that this condition, equivalent to the Carnot principle, indeed
holds. The average work performed by the system per cycle and the efficiency follow from (14)
according to the general expression (1) and (2) if the function f(x) is known. The Carnot
efficiency is attained when a; = a» and a3 = ay. that is. when the reversibility conditions

hold. It is interesting that this condition is independent of the form of the f(x) function.
The total average bath entropy produced per cycle is
AS; = Beota Ceotd + Pror Qi = s(az, 1) — slay) + s(ay, a3) — 5(as).
This quantity is non-negative if f(x) is a decreasing function of x, according to a previous
remark. For small departures from reversibility, i.e. for a; &~ as, a3 = ay, expansion up to
second order of the above expression gives

1
AS &~ —3(a - - >(as —w)?

. The Boltzmann-Gibbs formulation tells us that the probability that the system energy be
erlw), k = 0,1,..., is proportional to exp{—pBe;(w}). One can prove from that formulation
that —df/dx is equal to the variance of the oscillator action and is therefore positive. This
relation shows further that the variance of the total entropy produced per cycle is twice the
average value given in (18), a conclusion related to the ones given in [16] and [17]. These two
papers consider only classical systems in contact with a bath, but they are much more general
on other respects.
Furthermore, it can be shown that cycles are reversible if and only if
Teota _ €xlwn) —€o(@2)  €x(ws) — €olws)
T €(@1) —€o(w1)  €xlwy) —€olwy)’
fork = 1, 2.... These relations may hold when the €, (w) factorize as k (k) g (). Foroscillators
in particular we have €;(w) = (k + 1/2)fiw, according to the quantum optics formulation, and

the simpler expression in (16) is recovered. The above result is based on the concept of relative
entropy [18]. The mathematical details will be given ¢lsewhere.

5. Average oscillator energy

According to the Boltzmann-Gibbs formulation, the average energy of a classical one-
This is essentially the empirical Dulong and Petit law,
which asserts that solid constant-volume heat capacities do not depend on temperature. Thus,
the average oscillator action f = 1/8w = 1/x obeys the differential equation

dimensional oscillator is U = T.

The relation U = T, however, is unacceptable because it would necessarily lead to infinite
blackbody radiation energy if the Maxwell electromagnetic theory is to be upheld. Indeed,
the Maxwell theory applied to a cavity having perfectly conducting walls predicts that there
is an infinite number of modes. each of them being modelled as an harmonic oscillator. If an
average energy T is ascribed to them, the total energy is clearly infinite. This observation,
made near the end of the 19th century, caused a major crisis in Physics [19]. It apparently
did not occur to the physicists facing that problem that the mere addition of a constant on the
right-hand side of (20) would solve the problem. Let us indeed suppose that

Cameot cycle for an oscillator 497

where i is now known as the Planck constant'’®, Note that f and 7 have the dimension of
action (‘energy’ x ‘time’), while x has the dimension of an action reciprocal, so that fix is
dimensionless.

The solution of (21) that gives f(x) — | /x — 0 in the classical limit T — oo reads

| h i 22
S 2 +exp{)‘rx} -1 (22

This is the expression obtained by Planck in 1900 from a fit to the available experimental
results. aside from the term® 71/2. The latter term is responsible for the Casimir effect [20, 21]
but, as we have seen, it does not affect cyclic operations. The above expression gives U/T
explicitly as a functionof w/T.

We obiain from (22) after integration

d(x) = i’_’i + In[1 —exp(—hx)]. (23)

Therefore, the entropic function defined in (15) reads

s(x.y) = ——M —In[1 — exp(—Tix)]. (24)
' exp(hy) — 1
When this result is introduced into (14). explicit expressions for the work performed (1) and
efficiency (2) follow. In the classical regime, T — oo, the above expression reduces to

s(x,y) = % ~ In(hx). (25)

Note that the Planck constant 71 cancels out in the final formulas. We leave it there for aesthetic
reasons, the argument of In(-) being expected to be dimensionless.

The quantities of interest in a Carnot cycle, i.e., mainly the work performed and the
efficiency. have been obtained without giving any consideration to the oscillator entropy or
temperature. We only need evaluate the entropies produced in the cold and hot bamg. For
purposes of illustration (see figure 2) it is, however, of some interest to introduce the oscillator
entropy S,sc(@, T') = s(Bw). which may be expressed as a function of wand the average energy
U. Itis then found that the oscillator inverse temperature Bo5c = 9S/9U is indeed equal fo the
bath inverse temperature 8. When the oscillator is isolated and the frequency varies slowly
the product x = B, remains constant. The average oscillator entropy therefore remains
constant during adiabatic processes. The condition ¢, = a; stated above amounts L0 saying
that reversibility requires that the oscillator be put into contact with the cold bath only if its
inverse temperature is almost equal 10 feoa, and likewise for the other adiabatic process. L;l
us emphasize. however, that this simple picture, similar to the one advanced by Carnot in
1824, does not generally apply to multimode oscillators, unless the mode frequencies vary in
proportion to one another, or are continuously thermalized through some non-linear cou pling.

6. lllustration of Carnot cycles

Let us give first an order of magnitude of the work performed, considering for simplicity the
classical limit T — oo. In that limit, s(x) = — In(x} + constant. It follows that for reversible
classical cycles the average work performed per cycle reads
w3 Thor )

— vy l P
AW = kp(Thor — Tota) In (w: T

(26)

13 A generalization of equation (21) has been proposed in [23]. )

14 Planck’s attempted derivation applies to highly multimoded optical cavities. Einstein pointed out in 1906 that the
Planck derivation makes sense only if one postulates that oscillators at frequency ¢ may exchange energy by multiples
of he.
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Figure 3. Average work performed per cycle AW and efficiency n for Thy = 1 and Topq = 1/4,
(a) as functions of 2ws;. The Carnot efficiency is attained when 203 = 1. (b) The oscillator
frequency is kept constant when in contact with either bath. We have set oy = w3 = 1/4. oy = wy
is kept as a parameter.

where the Boltzmann constant has been restored. At room temperature the classical
approximation is a valid one if the oscillator frequencies are substantially smaller than about
10 THz. For example. for N = 1/kg & 10*® independent oscillators, Th,, = 1200 K,
Tota = 300 K, and ) = 2w;3, the work done per cycle AW = 9001n(2) J =~ 620 J.

Let us now go back to the quantum regime and evaluate explicitly the work performed
and the efficiency of oscillators alternately in contact with a hot bath at temperature T, = 1
and a cold bath at temperature T.,;2 = 1/4. We consider in figure 2 the case where @) = 1,
wy = 1/4, wy = 2 and ws is kept as a parameter. When wy = 1/2, the system is reversible
and the cycle in the oscillator temperature—entropy diagram in figure 2(a) is rectangular, The
entropy AS..4 produced in the cold bath is shown by the lower right-directed arrow, while the
entropy —ASy,, removed from the hot bath is shown by the upper, left-directed arrow. The
total produced entropy vanishes in that case. The case of an irreversible cycle with w: = 1 is
shown in figure 2(b). Note the temperature—entropy jump, shown by a dashed line, when the
oscillator is put in contact with the hot bath, In that situation the total produced entropy (see
the arrows) is positive.

Figure 3(a) shows how the work performed AW and the efficiency # vary as a function of
w3, The Camot efficiency njc = 3/4 is reached for w3 = 1/2. For larger w;-values the energy
extracted per cycle increases but the efficiency is somewhat reduced.

A case of interest is when the resonator frequency is a constant ; when the resonator is
in contact with the hot bath and a constant w; when it is in contact with the cold bath, in which
case ¢y = ay and a; = ay. In that situation, the hot and cold baths may be modelled as large
collections of oscillators at frequencies close to @y and w;, respectively. Supposing again that
Thor = 1 and T.oq = 1/4, we find from previous expressions that the energy extracted per
cycle is maximum when w; = 1/2 and w, = 1/4. For these parameter values the efficiency is

= 1/2, that is, substantially less than the Camot efficiency n¢ = 3/4. The variations of the
work done and the efficiency as functions of @, are shown in figure 3(b).

Another case of interest is when the parameter does not vary when the system s transferred
from one bath to another. In that case. according to the observation that follows (6), the work
performed does not fluctuate.
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7. Conclusion

We have shown that heat engines whose system is a single-mode linear oscillator obey the
Carnot theory. Explicit expressions for the work performed per cycle and the efficiency were
obtained on the basis of a simple prescription. We have illustrated reversible and non-reversible
cycles, and shown that the variance of the entropy production per eycle vanishes when the cycle
is reversible and is, in general, equal to twice the average value.

The present theory may be generalized to multimode oscillators by adding up modal
contributions. Consider in particular a non-dispersive transmission line terminated by a
movable short-circuit, a configuration resembling the classical gas-filled cylinder witha piston.
Because the resonant frequencies change in proportion to one another when the length of the
{ransmission line is modified, a temperature may be defined at every step of the adiabatic
process and the Carnot efficiency may be attained. This is also the case when the‘st[apc _of a
cavity does not change as the volume varies. But this is not so for dispersive transmission lines
such as waveguides. Slow length changes create an average distribution among the modes that
cannot be described by a temperature, unless some thermalization mechanism is enforced at
each elementary step. Carnot cycles for radiation are discussed in [22].

The force f depends on the term fiw/2 in the expression of the mode average energy. and
is non-zero even at T = 0 K. But if we are only interested in the average work performed over
a full cycle, this term may be ignored.

Recent interesting generalizations take into account finite interaction times, Af. between
the oscillator and the baths. In that case there are departures of the work done from the change
in free energy. which are inversely proportional to Az, Note also that the energy required to
detach a system from a bath should be accounted for when the cycle is not slow [6].
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