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Bandwidth of Step-Index Fibers with Microbending

by Michel Clapeau * and Jacques Arnaud *

The steady-state microbending loss of step-index multimode fibers is found to be, within the
WKB approximation, 6.27 (y/4) dBJunit length, where 7 denotes the spectral density of the
curvature process. The product of the square of the pulse broadening improvement factor %
and loss . is 0.74 dB. Results are given for various excitation conditions.

Bandbreite von Stufenprofilfasern mit Mikrokriimmungen

Die stationdren Mikrokrammungsverluste von Stufenprofilfasern ergeben sich im Rahmen
der WKB-Naherung zu 6,27 (y/4) dB/Linge, mit y als spektraler Dichte der Kriimmungsver-
teilung. Das Produkt aus Dimpfung und Verbesserungsfalktor zum Quadrat far die Impuls-
aufweitung ist 0,74 dB. Die Theorie wird fiir verschiedene Anregungsbedingungen ausgewertet.

There is a distinet possibility that the bandwidth
of multimode fibers, particularly step-index fibers,
can be drastically increased by random deforma-
tions. Marcuse [1] has shown that the product of
the square of the pulse-broadening improvement
factor # and the execess loss & is independent of
the distortion strength. This product, however,
depends on the index profile (e.g., step-index or
square-law), the type of deformation (e.g., core
diameter variations or microbending) and the spec-
trum of the deformation (e.g., uniform, peaked, or
rapidly decreasing). It is not known yet how low the
product #2% can be, because the limitations that
fabrication techniques impose on the distortion
spectra have not been sufficiently investigated and
also because previous theories are somewhat in-
accurate.

The first detailed expressions for the effect of
random distortion on the fiber bandwidth were ob-
tained from coupled-mode theory taken to the
limit of continuous mode numbers [1]. Tt now
appears that rigourously equivalent results can be
obtained from ray theory: The rate of pulse broad-
ening can be obtained by integrating time along
the ray trajectories [2) and the impulse Tesponse
can be shown to be gaussian for large lengths as a
consequence of the central limit theorem.

In modal theories, a number of approximations
were made (use of principal mode number, neglect
of the coupling between nonadjacent modes) that
are open to question [3]. In contradistinction, the
ray theories presented in [3] and [4] are rigorous
(within the WKB approximation) and applicable
to any index profile and any curvature spectrum.
In the present paper we shall only consider for
clarity lossless step-index fibers and uniform cur-
vature spectra. We discuss both the irradiance
‘patterns and the fiber bandwidth. For large dis.
tances, the approximate results of Olshansky [5]
turn out to be quite accurate. However, for non-
uniform spectra, the two-dimensional results in [6]
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indicate that the approximations used in [5] may
lead to large errors,

In the following, the core radius is denoted Ta)
the relative index step A, and the group velocity
in the core material up~ c/ng, if ng denotes the
core index. The fiber axis has local curvatures
Cz(2) and €y (2) in the «, z- and y, z-planes respec-
tively, 2 being a coordinate along the fiber axis.
We assume that the spectral densities of these cur-
vature processes

+ oo

Gz.9(2) = | (O2,9(&) Ca,y(z + L) exp(iQ0)dZ (1)
assume a constant value p, and that Cz, 0y are
uncorrelated. A mode of propagation can be speci-
fied by its normalized propagation constant
e=(0/0¢)? with 0<s<1 and azimuthal mode
number v. The value »=0 corresponds to merid-
ional rays and &=12 to helical rays. Thus the ad-
missible region in the e, p-plane is shown in Fig. 1.
If we neglect the transmission of rays such that
e>1(or >0;). we must impose on the optical
power Pt(g, v, 2) the condition Pt(1, »,2) =0. For
step-index fibers, we set U'=0 in eq. (8) of [4].
We can evaluate explicitly the average radius
squared R. In normalized quantities, we have
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Fig. 1. Domain of integration of the Fokker-Planck equa-
tion in the g, v-plane. Pt is required to vanish for e=1
(0= 6,).
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where Z = yz/4. This equation is solved numerically
from some initial distribution Pt(e, »,0) by a
straightforward procedure along the z-axis. The
ziinecrement is small enough to avoid numerieal
instabilities. The number of points in the &. y-plane
is about 1250. A full solution of eq. (2) requires
only 15 minutes on a MITTRA 15 computer. The
total power for some fiber length z— L is obtained
by integrating over & and v in the area shown in
Fig. 1 the quantity P (e, v.2)=2Z4n(e v) Pl(e, v, 2)
where the normalized ray period Zj is given by
Zin(e.v) = (e = VI3 e. (3)
The statistical modes are obtained by setting
/02 = — Az in eq. (2), where A-represents the micro-
bending loss. For the statistical modes such that
Pt is independent of », the analytie solution of
eq. (2) is
Pl v, 2) = Zn(e, v) Jo (Uom VE) (4)
where wugm, is the mth zero of the Bessel funetion
Jo(.)- The corresponding losses are
o= 827p[4, «1=133.06y/4,
ota = 81.25p/4 (d)
decibels per unit length. The far-field pattern is
(leaving aside the refraction at the fiber tip)

Im(a) = Jo(2om 6/6c) (6)
and the near-field intensity is
I (r) = B(w[2,7[re) (7)

where E(.,.) denotes an elliptic integral of the
second kind.

Numerically, we have verified the analytical
result in eq. (4), and we have investigated the
evolution of the microbending loss as a function
of the fiber length for various excitation conditions
(see Fig, 2). We verify in Fig. 2 that the slope of
the curves for large z is that given by «g in eq. (5)
independently of the excitation conditions. But for
many short fibers, the large z behaviour may not
be reached, and therefore our numerical results
are needed.

To investigate the bandwidth of the fiber we need
augment the left-hand side of eq. (2) by a term
(A2yup)e o Pt/ot and Fourier transform P({) into
P (), where 2 denotes the baseband angular fre-
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Fig. 2. Power loss in decibels, at zero modulation frequency,
a8 a function of the normalized axial coordinate = yz/4
for varions exeitation conditions; (a) steady-state distribu-
tion, (b) P(g» 0)=3(r), (¢) 8(») (¢=1/2), (d) 8(v)"
$(e —1/2), where 3 denotes Dirac’s function.
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Fig. 3. Normalized power loss in decibels as a function

of the normalized modulation angular frequency
(A2[y10)2 22 for various normalized fiber lengths = y L/4.

quenecy. For numerical purposes, we set P = R +il.
and solve the corresponding pair of equations for
R and I by the same straightforward numerical
procedure used for P. We have plotted in Fig. 3
the power loss 10 logyo(R2+ I2)1/2 as a function
of 02, for various fiber lengths L and for a Lambert-
ian excitation. (B and I denote integrals of B and
I, respectively, over & and ».) When L=y L/4> 1
the impulse (and frequency) response is gaussian
and thus the curve is a straight line. We find from
the slope of that straight line

L —=074dB: L>1 (8)

where # denotes the steady-state microbending
loss and #2 = ¢2/o3 denotes the square of the im-
pulse width, with (¢) and without (aq) distortion.
It turns out that those values for oy and #:¥ are
within a few per cent of the values given by
Olshansky [5]. But we do not expect this agreement
with approximate modal theories to be maintained
for peaked or otherwise distorted curvature spectra.

(Received May 31st, 1979.)
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