BANDWIDTH OF DISTORTED MULTIMODE
WAVEGUIDES EXCITED BY LASER SOURCES

Indexing terms: Lasers, Optical fibres

We show that the bandwidth of distorted multimode optical
fibres excited by quasimonochromatic lasers is equal to the
bandwidth of the undistorted fibre divided by the micro-
bending loss measured with l.e.d. sources, to within a numeri-
cal factor. This simple result is derived for a slab model, but it
may be general.

At the present time, many optical transmission systems use
multimode optical fibres and light-emitting diodes (l.e.d.). One
may wonder what improvement in transmission bandwidth is
achieved when the led. source is replaced by a laser source.
We shall consider the idealised situation where the laser source
is quasimonochromatic and generates a single transverse mode
that matches the fundamental mode of the multimode fibre.
Some of the most recent injection lasers approach these condi-
tions. In this case, the bandwidth would be almost unlimited if
the fibre were free of distortion. With modern cabling
techniques, the fibre distortions (mainly microbending) are
fairly small but not negligible. The fundamental mode excited
by the source therefore becomes coupled significantly to the
higher-order modes, and the input pulse broadens because the
group velocities of the various modes are usually not perfectly
equalised. We will show that in fact the pulsewidth increases
initially in proportion to the square of the fibre length. Thus,
although distortions increase the fibre bandwidth when vir-
tually all modes are excited (lLed. sources), they reduce
the fibre bandwidth, at least initially, when only the funda-
mental mode of the fibre is excited (laser source). To our know-
ledge, the latter regime has not been investigated in detail. It is
important in practice, whenever led. sources are being
replaced by laser sources, to understand better their general
behaviour. We shall treat in this letter a simple model of ray
propagation that allows exceedingly simple calculations. These
calculations have tutorial value because they help explain in a
simple manner the basic mechanisms of pulse propagation.
They also provide a formula, for the fibre bandwidth under
laser excitation, whose requirements are two simple measure-
ments. This formula may have greater generality than the deri-
vation suggests,

Let us consider a step-index two-dimensional fibre with cur-
vature law C(z). This curvature is taken to be a Gaussian
random process with white (uniform) spectrum. Because the
fibre is highly multimoded, a ray treatment is appropriate. The
laser excitation, matched to the fundamental mode of the fibre,
is modelled by an axial ray.

From simple geometrical considerations, the angle 6(z) that
a ray makes with the curved fibre axis at z is given by’

o(z) =6f Clz.)dz, ()

3

if, as assumed earlier, 8(0) = 0. The time of flight 5 of an axial
ray over a length L of fibre is simply L/u, where u denotes the
group velocity in the slab material. In practice, we may set
u = c/n, where n denotes the slab refractive index. For a ray
that makes a small angle 8 with respect to the fibre axis, the
time of flight per unit length 1s

1/ucos 0 = 1/u + 36%/u (2)

and therefore
1 L
t{L) = Lju + 5 u ! | 0%(c) dz (3)
o

where 6(z) is given by eqn. 1.
We assume that the C(z) curvature process has zero means
and microscopic correlation, that is

(C(z)C(z)) = v8(z — 2) (4)

where (> denotes an ensemble average, y the spectral density
of the curvature process and 4(-) the Dirac distribution. We
thus assume that the spectral density of the process is indepen-
dent of spatial frequency. In practice it is sufficient that the
spectral density be a constant up to a spatial frequency of the
order of ./(A)/d, where A denotes the relative index change,
and 2d the slab thickness. Eqns. 1, 3 and 4 form the basis of all
subsequent calculations.

The key point that simplifies our derivations is that 6(2) is
Gaussian because C(z) is assumed Gaussian. In fact, it is not
even necessary that C(z) be Gaussian. It suffices that C(z), C(2'),
z % 2’ be independent. Because 6(z) is Gaussian, we have?

£0,0:0504) = (0,0,)<0:64)
4+ (0,0;5¢0: 05> + (0,8,3<0:03> (5)

where we have set for brevity 0(z,) = 8,, 8(z2) = 0.
The average time of arrival (or pulse centre) is

L

L)y = “”Z“)J (6*(z2)) dz 6)

where the constant term L/u has been dropped for brevity.
From eqn. 1 we have

<00y = [ [ <C(21)C(z2)) dzy dz
oo

=y min (z, 2) (7)

where min (a, b) is a or b, whichever is the smaller. In particu-
lar, ¢6*(z)> = yz. After integration, eqn. 6 is

(L)) = L fdu (8)
The square of the r.ms. pulse width ¢ is, from eqns. 6 and 1,

L L

oF = () — (0" = (1/20) J 6[ [6*6*>

= (0*)¢0*)>] dz dz’ ©)
However, using eqn. 5
0y — (0°3¢0%) = 2y*[min (2, )’ (10)
and after integration we find
o(L) = y//(12)u (11)
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a relation that exhibits the [* initial behaviour of o as an-
nounced earlier,

It is not difficult to treat similarly the case where the laser
excites a plane wave at an angle 6(0) = #,. We find

o(L) = u™ (2 L*/12 + 305 13/3)' 2 (12)

If the first term in eqn. 12 is negligible, we note an 32
behaviour.

In deriving the previous results, it has been assumed that all
the rays are totally reflected, that is, the microbending loss with
laser excitation is assumed negligible. If, however. all the
modes are equally excited, a situation encountered with l.e.d.
sources, the microbending loss % in decibels is given by the
formula?

£ = 265yL/A (13)

We assume that cabling is good enough that & be not large
compared with unity. This excess loss can be measured by
comparing the loss data for the cabled and uncabled fibre.

The expression for the r.ms. pulse width of the undistorted
fibre under the same conditions (that is, with l.e.d. sources), on
the other hand, is given by

a0 = LA/\/(12)u (14)

This formula is applicable to a rectangular pulse of width
LA/u. The 6o parameter should be measured on a fairly short
piece of fibre (e.g. a few hundred meters) so that distortions
play a negligible role. Note also that the Le.d. output should be
filtered to reduce chromatic dispersion as much as possible.

Then, from eqns. 11, 13 and 14, we find that the fibre o under
laser excitation can be written

0/0¢ = excess loss in dB/265 (15)

This formula is valid provided that the excess loss is less than
about 1 dB.

Let us assume, for example, that the excess loss in dB due to
cabling, measured with an led. source, is % = 01 dB. Then
eqn. 15 tells us that the fibre bandwidth under ideal laser exci-
tation will be 26 times the bandwidth measured on the straight
fibre with all modes excited. More specifically, if A = 001,
L =10 km and n = I'5 we have o, = 145 ns. With a laser
source, the bandwidth is = 1/4¢ = 46 MHz.

The above result in eqn. 15 is rigorous only for step-index
slabs and uniform curvature spectra. But we expect the same
behaviour to be maintained for graded-index fibres with
power-law profiles and more general distortions than the ones
considered previously. It may be that only the numerical factor
is affected.

Acknowledgments: This work was presented at the theoretical
workshop held in Leeuwenhorst, Holland, 13th-16th Septem-
ber, 1979.

J. ARNAUD 13th November 1979
Laboratoire d'Electronique des Microondes

CNRS ERA 535 and GRECO 1]

123 rue A. Thomas

Limoges, 87060 Cédex, France

M. ROUSSEAU-LEBERRE

Laboratoire des Signaux et Systémes
Plateau du Mouilon, Gif-sur- Yvette, 91190 France

References

1 BERREMAN, D. w.: ‘Growth of oscillations of a ray about the ir-
regularly wavy axis of a lens light guide’, Bell 5 yst. Tech. J., 1965,
pp. 2117-2132

2 BLANC-LAPIERRE, 4. and FORTET, R.: ‘Théoric des fonctions aléa-
toires’ (Masson, Paris, 1953), p. 115

3 ROUSSEAU, M., and ARNAUD, J.: ‘Ray theory of the impulse response
of randomly bent multimode fibers’, J. Opt. Quantum Electron,,
1978, 10, pp. 53-59

0013-5194/80/010034-0281 50/0
ELECTRONICS LETTERS 3rd January 1980 Vol. 76 No. 1



