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As is well known, the eikonal equation of geometrical

W optics is obtained by making the substitution v — ¥.§

in Maxwell’s equation, where ¥V denotes the gradient
operator and S the eikonal.! We have observed in a
previous letter? that the wave equation obeyed by the
scalar field ¥ describing beam waves can be obtained by
writing the eikonal equation in the form of a power
series in p=aS, where a5 denotes the gradient of Sin a
plane perpendicular to the system axis (z). ordering each
term in syvmmetrical form, and making the reverse
substitution ¥§ — ¥.

This procedure is quite similar to that used to obtain
the Schroedinger equation from the Hamilton—Jacobi
equation of classical mechanics? In quantum me-
chanics, the hamiltonian operator is required to be
hermitian, in order that the existence of the particle
under consideration be preserved.* Because the optical
field is described by a pair of vectors rather than by a
scalar quantity, and because we are interested in lossy
media that have no analog in mechanics, the optical
problem is somewhat different from the mechanical
problem and needs to be investigated. We will show
that, in optics, the symmetrization procedure preserves
in a natural way the biorthogonality relation existing
between the vector fields. For generality, consideration
is given here to bianisotropic media.?

If we assume that the medium is linear, time-
invariant, free of time and space dispersion, and omit
the exp(x!) time dependence of the sources, Maxwell’s
equations, in a source-free region, are

V Xe= —b, (1a)
(1b)

If we substitute in Eq. (1) field components of the form
egexp(S+---), where ¢ is independent of «, S is
proportional to &, and the omitted terms are of the order

Vv Xh=xd.

of k!, k%, ..., the leading terms in (1) are
=X eo=—«hg, (2a)
= Xhy=xd,, (2b)

where == V.S= (kb X«rdo) (e0-xdo)~". The complex ray

vector s= (hyXeo) (€0 ko)~ satisfies the same equations
as =, except for the substitutions kbs = hy, xd; = eq.
A convenient way of writing the linear relation

between e, h, d, and b is®
) o
—cb’ "

—kd
N
h
where M denotes a 66 matrix, a function of « and of

position. It is easy to show that Eqgs. (2) and (3) have
nontrivial solutions only if

derf :x]MLl]’ o, @

where 1 stands for the 3X3 unit matrix and, for any
vector a, (mX)a==Xa. Equation (4) is a partial
differential equation for S, called the eikonal equation.
From a previous remark, the complex ray vector s obeys
the same Eq. (4) as =, M being changed to M. It is
important to note that Eq. (4) remains the same if M is

changed to its transposed M, and = (or s) to —= (or
—s). Thus, to any complex ray trajectory in a medium
characterized by a matrix M, there corresponds an
identical complex ray trajectory described in the oppo-
site direction in the medium characterized by the matrix
M. Let us give an example of transposed media.

If a medium characterized by a matrix M in its rest
frame is moving at a constant velocity u, the material
matrix seen by a fixed observer has the form?”

M () =T~ (u)MT (u), )

where T(u)T(—u)=1. Thus, if 2 medium is reciprocal
in its own rest frame, ie., if M=M, we have
M(u)=M(—u). Two dielectric rods moving at the same
velocity in opposite directions, for instance, are charac-
terized by matrices that are the transposes of one
another.®

We shall now let the z axis play a special role and
rewrite Maxwell’'s Egs. (1) in the transverse form,
similar to the equations obtained by Marcuvitz and
Schwinger® for the case of isotropic media. Considering
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also the equation formally adjoint to it, we have
H(9,x,2)¢(x,2)+d.4(x,z) =0, (6a)
H+(93,x,2)¢* (x,2) —3.07(x.2) =0, (6b)

d d 9
-—v(]I!+,|}d')E— f [ ﬂ_"' l:_ '.':"t'l r.a".'t'g =-0, (()C)
dz dz s

where x denotes a vector with components xj, x2; @ has
components d/dx1, 9/0x,, and 9.=48,/dz. The explicit
form of the 4X4 matrix operator H will not be given
here. It can be obtained by writing Eq. (1) in the
X1, X9, 7 cartesian-coordinate svstem, and rearranging
the terms, using Eq. (3). In Egs. (6), we have defined

v &1 s
f= y= , 1= ; 7a)
e[ lo=REE
==yt {153 hat
@*‘Ei: ] \"E|: } i‘E[ :[ (7b)
vt a7~ —-}£1+

It can be shown that, physically, ef, h* represent the
fields of a wave propagating in the transposed medium,
i.e., in the medium characterized by the matrix M. The
invariance relation Eq. (6¢) is therefore a straight-
forward consequence of the Lorentz reciprocity
theorem.?*

We want now to relate the scalar wave function
used in beam optics to the vector wave function ¢ that
we have just defined in terms of the transverse com-
ponents of the electric and magnetic fields e, h. For
simplicity, we shall restrict ourselves to optical beams
propagating in a direction close to the z axis. We view
the medium as a perturbed stratified medium and
assume that «, ¥+ have the form

U (x,2) =W (2)¢ (x,2), (8a)
UH(x,2) =W (2)¥+ (x,2), (8b)

where the basal vector wave functions W*(z), W' (z) are
of the form

z

W (2) =Wa(3) exp(P-x) exP[ f %(z}d{l, (9a)

[}

W (z) =Wa*(z) exp(—P-x) GXPI:— [ :’Ya(3)d$:|y (9b)

0
and describe waves propagating in the stratified medium

characterized by the matrices M(0,5) and M(0,2), re-
spectively. W', (z) and W ,*(2) represent local eigenstates
of the field and . a local propagation constant. These
quantities are defined by the eigenvalue equations

H(ﬁ,ﬂ,z)lr,(z) +Ta(z)wa(5) :0) (103)
H+ (=P, 0, 2) W (3) +v.(2) W (z) =0, (10b)
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where z plays the role of a parameter. Note that
W, W' are defined only to within arbitrary scalar
functions of z. Equation (6¢), however, allows us to
introduce the normalization conditions?

_ Jl if a=g,
wow,=] (100)

lo it a3,
W dWe/ds=0, ef=1,2 3, 4. (11)

¥, (5) and W', *(z) are now well-defined functions of %,
except for a constant factor that is to be found from the
initial conditions.

In writing Egs. (9), we have assumed that the scale of
variation of the medium parameters in the z direction is
large compared with (ya—vs)~!, a3, and neglected the
coupling between the four eigenstates of polarization. In
what follows, we deal with only one eigenstate, namely,
a=1,

Let us now consider the scalar part of the vector
wave function. From Egs. (6¢c) and (8), we find that
the invariance condition!

if {f ki
— f [ Pk )dndn=0 (12)
dzs s e

must hold for any ¢, ¢*.

The eikonal equation applicable to ¢ is obtained from
the substitution V—%=+VS (ie, 8— p+p, 9. 71
+8.5) in Eq. (6a),

det{H(B+p, x, )+ (v1+3.5)1} =0, (13)

where 1 denotes the 44 unit matrix. Equation (13) can
be solved in principle for 8.5. The solution of Eq. (13)
corresponding to the eigenstate of polarization selected
before is rewritten

H(px,5)+08.5=0. (14)

Expanding /7 in power series of p and writing each term
in symmetrical form, we get

9:S+f(x)+[g(x) - p+p-£(x) ]+3pF (x)p+- - - =0, (15)

where f denotes a scalar, § a vector, and F a symmetrical
matrix. They are functions of x and z (the z dependence
is omitted for brevity). Replacing now VS in Eq. (15)
by the operator V¥, we obtain

OY+{f(x)+[£(x)- 9+0-8(x)]

+40F (x)a+- - -}p=0, (162)
and, similarly, for the adjoint equation
I —{f(x)—[£(x)- 9+9-8(x)]

JOF (x)a+- -}y =0. (16b)

It is not difficult to show that a solution ¢ of Eq. (16a)
and a solution ¥+ of Eq. (16b) satisfy the invariance
relation Eq. (12). This follows from the fact that @ is an
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antisymmetrical operator. We have, for instance, for
the component d,=49/dx, of 3,

o)+ (9" ¥)

00
= [ f (Ytoy/ dxy Yot/ dxy)dxydas

he00 40 a
= f das f — W )da =0, (17)
— —c 6;1'1

assuming that the product %} vanishes sufficiently
rapidly at infinity.
In conclusion, we see that the vector field (e,h) can be

o elated in a well-defined way to the scalar wave function

Y used in beam optics, in the general case of bianisotropic
media. The vector wave functions defined in Eq. (8) are
approximate solutions of Maxwell’s equations that are
valid only when the wave remains confined to the
neighborhood of the z axis, and when the coupling
between the local ecigenstates of polarization can be
neglected. We have also observed that symmetrization
of the eikonal equation ensures the applicability of the
Lorentz reciprocity theorem to the solutions of the wave
equation that is derived from it.
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