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Accuracy of Petermann’s K-Factor in the Theory of Semiconductor Lasers

M. B. EL MASHADE anp J. ARNAUD

Abstract—Petermann has proposed that the classical formula for the
linewidth of a laser be multiplied by a factor K >> | in the case of
gain-guided semiconductor lasers [1]. The concept of power in the mode
used by that anthor, however, is not well defined in a waveguide with
gain [2], and his theory is therefore opened to question [3]. The anal-
ysis given here avoids this difficulty and nevertheless agrees with Pe-
termann’s result. This is hecause spatial mode filtering is strong in os-
cillating lasers.

[. INTRODUCTION

ETERMANN has proposed that the classical Schaw-

low-Townes expression for the linewidth of a laser be
multiplied by a factor K >> 1 in gain-guided semicon-
tuctor lasers [1]. This is because the fundamental mode
_f propagation has a curved diverging wavefront in the
junction plane, and spontanecous emission from the active
region couples more strongly to such a mode than to
modes with plane wavefronts.

The concept of '*power in a mode’’ for a multimoded
waveguide with gain (or loss), however, is ambiguous [2].
Indeed, if we define the power of a mode as the integral
of the modulus square of the modal field over the wave-
guide cross section, the total power is not the sum of the
powers of the various modes. In other words, the modes
are not power-orthogonal. This is so even if the wave-
guide supports nominally only one mode because radia-
tion modes always exist in open structures. The validity
of Petermann’s calculations can therefore be questioned.
In fact, an alternative definition of *‘power in the mode™’
in [3] virtually amounts to suppressing the K-factor. On
the experimental side, the validity of Petermann’s result
is supported by many observations concerning gain-guided
"asers. In the present letter, we will consider only the

—spectral width of nominally single-mode lasers.

II. THE Laser MoDEL

We shall discuss the idealized laser model represented
in Fig. 1(a). The active slab has length L in the z-direction
and width w in the y-direction. Its thickness 24 is assumed
to be so small that the field is almost a constant within the
slab. Let us set

i(k>*=kHd=uy=b,+ia, ()

where k is the complex wavenumber of the active slab and
k. the wavenumber of the outer medium
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Fig. 1. (a) Schematic representation of the semiconductor laser model, with
the active thin slab of negative admittance uy, length L, and width w, in
a lossy medium, terminated by perfectly reflecting end mirrors. (b) The
classical representation of a single-mode oscillator. 1., models the spon-
taneous emission. (¢) Variation of w with frequency in the complex plane.
(d) Variation of ¥ with frequency in the complex plane.

where o expresses a loss. This loss may model the cou-
pling loss to some external detector of radiation spread
out uniformly in the outer medium, an approximation
often made in semiconductor laser theory. In (1), a, > 0
expresses the fact that the slab provides normal (but weak)
real-index guidance, while b, > 0 expresses the stimu-
lated emission gain in the slab material.

We shall consider in detail only TE waves with the
electric field vector E directed along the y-axis and inde-
pendent of y for 0 < y < w. This field component E, =
E(x, z) obeys the scalar Helmholtz equation, with a source
term originating from spontaneous emission to be dis-
cussed later.

Because the end mirrors are assumed perfectly reflect-
ing, the field vanishes at z = 0 and z = L. Thus, to within
an amplitude factor,

E(x, z) = exp (iw|x|) sin (B; 2) (3)

where

u + 8 = k; B = L. @
The integer L is the longitudinal mode number. For defi-
niteness, we set

u=b+ia; b>0 (5)

where the /-subscripts have been dropped for brevity. At
x = 0, E is a real function of z because obviously §, is a
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real quantity. Therefore, the longitudinal modes presently
considered, corresponding to various /-values, are power-
orthogonal, while the transverse modes usually consid-
ered in laser theory are not power-orthogonal.

Before evaluating the laser linewidth, let us recall Ya-
riv’s derivation of the linewidth of a single-mode laser

[4].

III. CrLassicaL DERIVATION OF SINGLE-MoDE LASER
LINEWIDTH

To facilitate a subsequent comparison to the multimode
case, minor changes of notation from [4] are made. The
laser is modeled by the electrical circuit shown in Fig. 1
(b), which consists of a passive admittance ¥ = G + iB
and an active admittance =Y, = —(G, + iB). In normal
operation Y is very close to Y. G and G, are both positive
quantities, G > 0 expressing the loss (perhaps the cou-
pling loss), while G, > 0 expresses the stimulated emis-
sion gain. This stimulated emission is accompanied by a
spontaneous emission modeled by an electrical current

Isp = ("'”!fGG df)m (6)

“Tor the optical frequency range fto f + df. We have as-
sumed complete population inversion.
Using classical circuit theory it is straightforward to
show that the spectral power density in the load Y is

S(f) = 4hfGoGI|Y-— Y™ )

Yy = Gy is almost independent of frequency, while ¥ con-
sists of a constant real part G and an imaginary part B
which varies rapidly with frequency because of the cavity
resonance, as Fig. 1 (d) shows.

The critical term in (7) is the denominator |Y — Y|

which leads to the usual Lorentzian line shape, because_

of the linear variation of B with fin the neighborhood of
the cavity resonance. The total power P_ in the load is
essentially the product of the peak S-value (for B = 0)
and the laser linewidth Af. It follows that the product P, Af
is a constant

P.Af = 2whf(Af)> 8)

- where Af, is the full width of the passive (‘‘cold’’) cavity
resonance. Equation (8) is, to within a factor of two due
to saturation effects, the classical Schalow-Townes for-
mula.

Let us now see what goes on differently in the case of
our weakly-guiding laser model.

IV. SpecTtrRAL WinpTH OF WEAKLY GUIDING LASERS

Interestingly enough we can use the simple circuit
model discussed above for each longitudinal mode (/-
mode). It is well known that propagation in a stratified
medium is analogous to a transmission line problem. Ac-
cording to [5], u/2mfie, where p, represents the free-space
permeability, can be viewed as the characteristic admit-
tance of the transmission line representing the outer me-
dium. Because this medium extends to infinity and is
lossy, this is also the load admittance. Likewise, uy /27 fito

is the negative of the active admittance representing the
thin active slab located at x = 0. The current [, modeling
spontaneous emission is related to the real part of i,/
2m fug exactly as in the classical case treated earlier.

The spectral density in our laser model is, therefore,
replacing Y by u and Y, by ug in (7)

S'(f) = dhfbbl|u — ugl’. 9)

This result can also be obtained by modeling spontaneous
emission by 8-correlated currents in the y-z plane and per-
forming Fourier series transforms.

The only difference between (9) and (7) comes from the
way the quantity |u — wg| varies with frequency. This is
illustrated in Fig. (c) and (d). These figures show the vari-
ations of the real and imaginary parts of u or Y as the
frequency varies. In that complex plane, the quantity |u
— up| is the geometrical distance between the point u and
the point u,. In our laser model, the relation

W+B =k +ie); w=b+ia (10)
implies that in the complex u-plane
ba = aky (11)

since (B, is real. Equation (11) shows that the u-curve in
Fig. 1 (c) is an hyperbola. Only the slope of that hyper-
bola near 4, matters when u = uy, a relation applicable
when the laser is well above threshold. In (11), o and kq
can be viewed as constants.

It is a simple geometrical matter to show that, when «
= uyp, the classical result in (8) is multiplied by the factor

1 + (b,/a,)’. (12)

This linewidth enhancement factor can now be identified
as Petermann K-factor. Indeed, the x-variation of the field
of the fundamental transverse mode in (3) is approxi-
mately: exp (iuglx|), and therefore [7)

2

K

]

H |Ez(x)|d.r/5 E*(x) dx

=1+ (b,/a,)* (13)

Thus, in the limit of large injected currents, the laser
linewidth is increased by the K-factor, as asserted in [1]
and [8]. This K-factor is much larger than unity in the
junction plane for gain-guided lasers, and in the plane
perpendicular to the junction if the guidance is weak as
presently considered.

In the previous discussion, only TE waves were con-
sidered. But spontancous emission is modeled by three
uncorrelated xyz components. The J, component excites
the TE waves just discussed while the J, and J, compo-
nents both excite TM waves. When these other two com-
ponents are taken into account the complete expression
for the spectral density is found

Su(f) = 4 hf(bb/kf) {kilu — up|™?
+ B u = up|t + 1} (14)
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where the subscripts n (transverse y-mode number) and [
(longitudinal z-mode number) have been omitted on 1 and
B for brevity. We will not calculate here the two addi-
tional terms in (14) but only point out that when the active
slab has negligible guidance: wy = 0, (14) gives isotropic
radiation as it should (LED operation).

V. LASER LINEWIDTH NEAR THRESHOLD

We have given a proof that well above threshold the
classical formula for the laser linewidth should be multi-
plied by the K-factor. This proof is not subjected to the
same objections as the calculation in [1]. It remains to
answer the question: what is the accuracy of the theory
near threshold? To answer that question, we have solved
[14] numerically for various injected currents.

To do that, we first select some b,( f) curve, a, being
assumed independent of frequency. Equation (14) gives
the spectral density of a mode of order n, . We select the

-rongest mode (called the *‘oscillating’’ mode), corre-
sponding to n = 0 and an /-value of the order of koLlw,
where k; relates to the peak frequency of the b,(f) curve,
We then evaluate the width Af of that S(f) curve. This
is the laser linewidth. Next we evaluate the power P, in
the oscillating mode by integration over frequency. A nu-
merical integration is required because the profile is not
exactly Lorentzian. Then we define an effective linewidth
enhancement factor K as the product Af P, divided by
the classical expression in (8).

In order to calculate the injected current corresponding
to the b,(f) curve initially selected, we evaluate the power
in all the n, I modes, say P. Because in our idealized laser
model there is no loss of electrons, holes, or photons, the
injected current is simply equal to the total optical power
P, to within a constant factor

lle = PIKf. (17)

‘ote that in this expression the variation of f can be ne-
slected. For a complete laser design, the initial b,(f)
curve should be selected according to the Fermi-Dirac
distribution, which depends on temperature and on the
carrier density. However, the shape of the gain curve does
not vary much in practice as we go through threshold, and
it is therefore permissible to select a fixed shape (an in-
verted parabola in the numerical examples to be given
later), changing only the magnitude of the peak value.

To appreciate the significance of the currents obtained,
it is useful to evaluate two particularly significant injected
currents, namely the threshold current I, and the single
longitudinal-mode current /; to be defined later. The
threshold current is defined by the condition that the gain
equals the loss. The classical expression [4, p. 182] can
be written

Iy = 87 e8f(S/\*) alL (18)

where e is the electronic charge, 8f the laser gain line-
width (on the order of 0.1f), S the mode area in the xy
plane, h the wavelength in the medium, and &L the single
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Fig. 2. Variation of the effective linewidth enhancement factor K* as a
function of injected current I. For large I/, ratio, K’ is almost equal to
the K-factor, also shown. On the horizontal axis are marked the threshold
current /,, and the single longitudinal-mode current J;, defined in the text.
Near threshold there is some discrepancy between K and K because of
imperfect transverse mode filtering. At /, half the power is in one trans-
verse mode,

pass loss (or gain). Numerical results are given in the next
section.

The *‘single longitudinal mode current,” J,, is defined
by the condition that half the total optical power is in a
single n, / mode. For that current, the coupling efficiency
to a single-mode fiber is at most 50 percent. We are here
referring to a transverse (prism-like) coupling in which
only one longitudinal mode can be coupled, and not to the
usual end mirror coupling. This 7, current will be found

. to be very high compared to the threshold current because

gain-guided lasers provide very poor longitudinal mode
discrimination, unless of course some distributed feed-
back mechanism is implemented,

VI. NUMERICAL RESULTS

We have selected the following values for the parame-
ters that enter into (14)

L = 200 ym (19a)
w =35 pum (19b)
o = 0.005 pm™! (19¢)
a, = 0.01 X 27 um™' (19d)
by = by, {1 — [10tke/27 — DJ*}. (19e)

The last expression shows that the b,( f) curve peaks at a
medium wavelength of 1 um. The width éf of that curve
(defined by the condition that &f times the peak gain
equals the gain curve area) is 40 THz. The mode area w/
2a, = 80 um?, and the single pass loss «L = 1. From
these numerical values we calculate a threshold current of
13 mA, using (18).

Using the procedure described in the previous section
varying the b,, parameter in (19¢), we calculate the line-
width enhancement factor X' and the corresponding in-
Jected current 1. K' is plotted in Fig. 2 as a function of 1.
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On the horizontal axis we have also shown the “‘single
longitudinal-mode current,”’ /;, defined earlier, and the
threshold current /. At Z,, half the power is in one trans-
verse mode.

These numerical calculations first verify that at large
injected current the linewidth enhancement factor K is
. almost equal to the K factor, whose value here is 1 +
(bomla,)* = 64.3. Indeed, the maximum b,, value is
reached when the gain a,b,/kq equals the loss «. This con-
dition gives b,, = 0.5 pm”",

At lower currents, the K-factor decreases slightly be-
cause of a decrease of b,. But the important point is the
departure of K’ from K. At threshold, for example, K is
significantly smaller than X.

VII. CONCLUSION

Using a somewhat academic, but well-defined model,
we have shown that Petermann theory [l] predicts cor-
rectly the laser linewidth well above threshold in spite of
formal objections. A correction needs to be introduced,
however, near threshold. In the present letter we have left
aside Henry c-factor. We have shown in [8] how this fac-
tor (or rather a modified version of it) combines with the
K-factor. Clearly, our model can be generalized to ac-
count for a reflection at some distance from the active slab.
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The role of K in such a configuration will be discussed
elsewhere. Another interesting problem, not treated here,
is the role of K on the injection locking bandwidth and on
the residual slave-laser linewidth.
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