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The motion of a charged particle in a space- and time-dependent potential and the motion of an

optical pulse in an inhomogeneous anisotropic medium coincide when the dispersion surfaces are the

same. For the trajectories in space to coincide, it is sufficient that the wave vectors be proportional.

It follows from the general expression of the average stress-energy density (4L /3K K, where L

denotes the average lagrangian density and K denotes the 4 wave vector, that radiation forces are

proportional to wave vectors for charged particles as well as for optical pulses. Because of these %
relations, many results in mechanics are applicable to optics. In particular, the constancy of the

horizontal component of the velocity of a bullet on earth has, as a counterpart in optics, the

constancy of the axial component of the group velocity of optical pulses propagating in thick tapered

dielectric slabs. It follows from this observation that thick tapered dielectric slabs are not suited for

long-distance communication, because of the large pulse spreading that they introduce, Slabs with

moderate thickness, however, may exhibit low pulse spreading.

Index Headings: Fibers; Communication optics.

e are concerned, in this paper, with the transmission

~of energy and information in the form of optical pulses

propagating through glass fibers. Radiation forces are

given detailed consideration, both for their own sake

and to clarify the relationship between matter waves

and optical waves, Results derived in one field of knowl-

edge can then be applied tothe other in a rather straight-

forward manner,

The similarity that exists between the Schridinger
equation that describes spinless particles in the non-
relativistic approximation and the scalar parabolic wave

equation that describes optical or acoustical heams prop-

agating at a small angle to some axis was discussed in
detail by Fock." We need only replace, in the Schréding-
er equation, time ¢ by the axial coordinate z, the
ratio w /#, where m denotes the mass of the particle
and [z the Planck constant divided by 27, by the wave
number on axis k({)}Efau, and —el/(x)/%, where ¢ denotes
the electric charge of the particle, and U(x), the elec-
‘ric potential, by the optical wave number k(x), This
“wrtlation was presented in Ref, 1 as purely formal: the
propagation of optical pulses was not discussed, The
mechanical and optical problems are, in fact, identical,
Two difficulties prevented, until recently, a complete
understanding of the problem. A general expression for
the force exerted by a wave on an absorber located in a
polarizable fluid was lacking, This result is now pro-
vided by Whitham’s theory,® The expression of the ca-
nonical stress-energy density (8L/8K)K, where I de-
notes the average lagrangian density and K the 4 wave
vector, shows that the force exerted by matter waves
or by optical waves on absorbers is proportional to the
wave vector k. The second difficulty was associated
with the inertia of light. Classical electrodynamics, as
it is usually presented, is inconsistent with special rel-
ativity. * This difficulty has been solved by Penfield
and Haus, * who have shown that the relativistic changes
of mass of charge carriers in magnetizable bodies are
essential to a consistent formulation (see also Ref. 5).
Once a cle has been made between canon-
ical mon 14l fo the wave vector) and

mass-carryine- momenta (preportional to the group ve-

ar distine

nta (propor

locity), no essential difficulty remains, ®~° It is fair to
say, however, that different points of view are expressed
in the literature. '®® We have attempted to clarify the
theory by discussing a number of simple but crucial
experiments., New results of practical value in fiber
optics are derived, in part from a comparison with
similar results in mechanics,

Analogies of different natures have been drawn in the
past between matter and light. We consider first the
Descartes analogy, which compares trajectories in iso-
tropic spaces. This analogy seems simple at first, but
its interpretation is, in fact, difficult because time and
space are entangled, The discugsion in the next section
is not complete. We attempt only to clarify the assump-
tions that are essential to the analogy. Rather deep
concepts are needed for a full understanding,

L. RAYS IN ISOTROPIC MEDIA

Let us associate to any ray a vector JK, called the
ray canonical momentum, which has the direction of
the ray. J denotes a quantity that remains constant
along any given ray. The motivation for the notation
Jk will appear later, Similarly, the canonical energy
is denoted Jw. The magnitude of Jk is assumed to de-
pend only on the medium in which the ray propagates.

It is further assumed that the intrinsic properties of
the ray (e.g., the frequency of the disturbance) remain
the same as the incidence angle i is varied. The Des-
cartes—Snell law of refraction, which states the con-
stancy of sin(i)/sin(i’) at a plane interface as i varies,
clearly follows from the invariance of the tangential
component of the vector JK (see Fig. 1b). To make the
invariance of the tangential component of Jk plausible,
Descartes noted a similar situation in mechanics, Con-
sider a ball traversing a breakable sheet, or rubber
band (Fig, la). Because the rubber band does not exert
any force on the ball in the horizontal direction. the
horizontal component of the momentum of the ball, JK

-/u 4, i5 invariant, On the other hand. the energy ab-
sorbed by the rubber band before it is broken loose is
independent of the angle of incidence of the trall; as we

€an see from a quasistatic analysis, I we assume is”
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FIG. 1. Illustration of the Descartes mechanical analogy for
the refraction of light rays. (a) A laall_zz';.\'ers:es a '_!1ge: Ehnt
reduces its momentum mu by a factor :ncepe;.:{fen'_: of z{ae angle
of incidence. The tangential component of mu is mv.arlanr. ;
because the sheet does not exert a force on the b.all in that di=
rection. (b) A light ray is reiracted away from the normal by
going to a less—dense medium. The tangential cc_>mp_onent of a
vector k, whose magnitude is independent of the‘ incidence
angle, is invariant. sin(i)/sin(#’) is a constant in both cases.

ropy of space, the energy of the bgll depends only on
the magnitude of the momentum J k. It follows that the
ratio 1JEk'|/ |JK| of the magnitudes of the momenfia of
the ball after and before it traverses the sheet is Iflde-
pendent of the incidence angle, From the geometric
construction in Fig. 1, the law sin(i)/sin(’')= const fol-
lows.

Let us now generalize these results to continuous
media. Because only proportionality between the ca-
nonical momenta is required for the analogy to hol.cli,
and because the canonical momentum of a particle is
mu, where m denotes the mass and U the velocity, the
mechanical analogy just described calls for the corre-

spondence
(1)

where 1 denotes the refractive index of the medium, de-
fined as /K| ppa/ |JK|ye. From Newton’s n?nrelativis-
tic dynamics, the trajectory in space-time X({) qi a par-
ticle in a gravitational potential V(X) obeys the differen-
tial equation

uan

A
LR _3v@). @)
di
If the total energy of the particle is taken eflualzto Zero,
the magnitude u of its velocity is given by ML
=-mV(X). Thus, if we replace # by n, according to

Eq. (1), we can rewrite Eq. (2)

2

TE)_ 3] . (3)
This is the equation for light rays (of a given color) ’m
continuous media. This analogy is exemplified in Fig,
2, where we compare the trajectory of a ball in a shal-
low gutter and the trajectory of a light ray in a grat:lt—.\::iw
index fiber or a nonuniform waveguide. I V (resp, k‘
or n?) is quadratic in the transverse coordinate x but in-
dependent of the axial coordinate z, the rays are exactly
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sinusoidal in both systems. In Eq. (3), ¢ does not, in
general, represent the time of flight of optical‘ pulses,
What we are comparing here are trajectories in §pace.
Time-dependent concepts have been used in the discus-
sion because the dispersive properties of particl.'es hap-
pen to be known from Newton's dynamics, The disper-
sive property of the refractive medium, however, re-
mains undefined, That is, the dispersion of the refrac-
tive medium may or may not be the same as that of mas-
sive particles. Most likely, it will be different, The
pulse velocities would then be different, too.

Let us now consider a modernversion of the Desc_artes
analogy, applicable to relativistic particles. Consider
a particle with charge e traversing two closely spaced
grids that have a difference of potential V betweer} them,
as shown in Fig. 3a. Let X(r) represent the particle
trajectory, where X={X,ict} and 7 is the proper time
with dr=i|dX |, Setting c=1 for simplicity, we have, by
definition

2 2
Z5 2+ dﬁ>2+(£x—3) —(ﬂ) +1=0. (dy_
dar dr dar dr
The canonical momentum of the particle, whose tangen-

tial component is invariant at a plane interface, car.l_. in
the present case, be taken equal to the mass-carrying

momentum

Jk=md%/dr) . (5)

[ mawsvussuenas

(b)

FIG. 2. (a) Motion of a steel ball in a gutter. The ball is
assumed to have zero velocity (zero energy, by definition)

when located on the top. The ball falls to the hottom of the.
gutter where it is deflected by a plate. Its subsgquent motion

is defined by the gravitational potential V(x), which corre-
sponds to the profile of the gutter if the gutter is_ sufficiently
shallow. The axial veloecity is a constant of motion. (b) Wave-
guide whose wall=-to=wall spacing 24 varies slowly wi!:h %

The ray trajectories (in space only) are the same as in (a)

when the local wave vector squared k%x) is proportional to V(x).
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{a) (b)

FIG. 3. (a) Amodernversionof the Descartes mechanical anal-
ogy, the sheet being replaced by a pair of electrodes. n*
=m —eV denotes the moving mass. The ratio of the sines of
the angles to the normal is a constant, as a result of isotropy.
(b) The charged particle traverses a double sheet of current,
creating a discontinuity in potential vector 3. The tangential
component of the cancnical momentum Ji = m*U+ed is invari-
. ant. The momentum transferred to the sheet is opposite to
ENe change in m*{, as can be seen by considering a steady flow
f charge (current) from the emitter to the collector,

When the grids are traversed, a constant energy eV
is subtracted from the canonical energy Jw, taken equal
to the mass energy

Jw=m(dt/dr) . (6)

Thus the ratio of the magnitudes of the canonical mo-
menta is, by use of Eq. (4),

IJK'| 1% /dr | _[{m*/{mz- 1]“2
IJkI  ldx/dr| | (di/d7 -1
E (Jw-eV)a/,=:ea—1]“2
] [ (Jw)z/m =1 ' (7)
Because this ratio is independent of the incidence angle,
sin(f)/sin(i’) is a constant, as is the case for nonrela-
tivistic particles, Two essential postulates were made
‘In the above discussion: medium isotropy and invari-
ance of the canonical momentum in directions of trans-
lational invariance of the medium, In a wave theory,
the latter follows from the proportionality of the canoni-
cal momentum to the wave vector., Thus. the law of re-
fraction follows quite generally from isotropy and trans-
lational invariance of the medium, A generalized form

of the law of refraction is needed if we omit the assump-
tion of isotropy. This is discussed in the next section.

[I. RAYS IN ANISOTROPIC MEDIA

The essential concepts of ray propagation appear most
clearly when the medium lacks isotropy. Let us consid-
er a charged particle traversing two closely spaced
grids carrying equal and opposite current densities, as
indicated in Fig. 3b, These sheets of current create a
discontinuity in the potential vector &, which is other-
wise uniform. The refraction of the charged particle
follows from the invariance of the tangential component
of the canonical momentum.

- %
Jk:mi—j:} +ed , (8)

Vol. 65

In the present case, the canonical energy Jw=wn (dt/dr)
is a constant, and the ratio sin(i)/sin(i’) varies with 7.
This is because the potential vector creates an aniso-
tropy in space, Note that, even in the absence of a mag-
netic field, it is permissible to add to m (dX/dr) in Eq.
(8) a term of the form ¥/(x), where f is an arbitrary
scalar function of X. This has no consequence, however,
on the ray trajectories, nor on the interference patterns,
In what follows, we assume that 3 is defined as the vol-
ume integral of the current density divided by the dis-
tance to the observation point,

IIl. EXPERIMENTS IN DYNAMICS

We need, first, to clarify the difference between the
canonical momentum JK and the maggs- carrying momen-
tum m (dX/d7), introduced in the previous section, This
difference is essential to understanding of the hamilto-
nian formalism. However, these two momenta are still
sometimes confused for light waves, For example,
Marcuse® wrote that if a light pulse goes through a di-
electric slab free of loss and of Fresnel reflection, the
slab is displaced toward the source of light, As noted
in Ref. 3, this conclusion violates the law of mass—en-
ergy equivalence. The error is to use the canonical
momentum (Jk) of the light pulse in a problem in which
the mass-carrying momentum m {di/d'r) =E(d%/dt), where
I denotes the pulse energy, should be used, The mag-
nitude of the canonical momentum increases as the light
pulse enters from vacuum into a medium with n> 1. The
magnitude of the mass-carrying momentum, on the con-
trary, decreases, because the group velocity |dx/dt|
in a lossless medium ig always less than ¢, The cor-
rect expression of the displacement of the dielectric
slab follows from the invariance of the sum of the mass-
carrying momenta of the optical pulse and of the slab,
with respect to an inertial reference system. The di-
electric-slab displacement is easily found to be always
In the forward direction and equal to En g (ut - 1), where
ng denotes the mass per unit length of the slab, and #
the group velocity in the slap, The slab displacement
can alternatively be evaluated, using classical electro-
dynamics, from the force exerted by the magnetic field
of the incident wave on the polarization currents induced
by the electric field, A difficulty was noted for magne-
tizable bodies that resulted from a basic inadequacy of
classical electrodynamics. This difficulty has been re-
solved recently by the introduction of a force of relativ-
istic origin, called the magnetodynamic force, ™5 The
displacement of the slab would be exceedingly difficult
to measure. An experimental technique using low-loss
glass fibers, however, is suggested in Ref, 7. The
mechanical system analogous to the dielectric slab is
the potential box, shown in Fig. 4a, If the potential in
the box is negative (for an electron, with e <0), the box
is displaced in the forward direction as in the optical
case.

If the light pulse enters under oblique incidence in the
refractive medium, a momentum is transfered to the
medium in the tangential direction because the tangen-
tial component of the mass-carrying momentum, unlike
the tangential component of the canonical momentum, is
not a constant, This tangential force is not present in
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FIG. 4. Displacement of a slab traversed by ?p:rtmﬁéym‘ses
o i lected. {(a) An electron L

sses and reflection are neg :
:ﬁ te;ﬁal box. Because u decreases as the e]e.ctro?n e[ntc; Zrd
thgobox for the voltage shown, the hox displa.:‘:ement 1% ior\}a i ;
(b) In the optical case the =lab displacement is :llwa_\fb orw 1en_
(#<ec). In such arrangements, only the mass-carrying mom
tum is relevant.

the case of the potential box, because Athe mass- c?rry;::;g
momentum happens to equal the canonical momentum
that special case.

Unlike mass-carrying momenta, canonical‘momenjt:-
are defined with respect to (noninertial) refer entj;:et ;.i
tems attached to the medium, or to the sourf:elo =
potential vector for the case of cha:rged_partm es, e
cause the reference system is not inertial, conserv :
of the total momentum is noil; expec_ti:cteo ht'arlét.u ;g:fsptand
in directions of translational invari i !
;:igl:fnt, consider first a si mple_mechamn.:;l sy{;s?e:f; !
with respect to earth (which cannot be‘conm e:l;e : ltil:he
tial no matter how small its accele_rgtmn .may e), .
momentum of a bouncing ball is not invariant, bicaﬁir'-
the ball can rebound off the ground, Hmf.re“rer‘ t et “ i
zontal component of the ball momentum 1§ invar 131;]%
the ground is flat and smooth, For mas.swe par iy
in an electric potential (or for a waveguide) ;he naln oW
carrying momentum happens to be equal to t .e c s
momentum. The canonical moment{.tm ca{: d:.ffedr '
the mags-carrying momentum only if a tl?1rd body &

medium) is present that can absorb the defererzce il
momenta. Such a medium is clearly absgnt .f01 :‘1 :
particle, a cold plasma, and a smooth uniform w ;ve
guide. ' This is the physical connection between these
three seemingly unrelated systems.

In the presence of a potential vecto.r, the two momeﬂta
are not the same. To clarify this point, let us go bzc
to the situation described in Sec. II. As the charge ]
particle moves through the current sheets,’th‘e tanjgent
tial component of its canonical momentum is 1nvar1;nw._
The momentum transferred to the current sheet‘s,' ?
ever, is opposite to the change of the mass-c?.n ying e
momentum of the particle, This mass-carrying mloqr;u.1
tum has a component in the plane of the sheet generally
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different from zero, With respect to the inertial §yftem,
we are dealing with two objects: the fzharged par:;cre

on the one hand, and the current carrier on the o E; :n
No electromagnetic momentum should be considergs 15 X
writing the conservation law. When the refef*etnce : gon
tem is attached to the source of current, an 1n. etraac_
electromagnetic momentum needs to be taken in Oﬁ el
count. It is obtained by integrating Ex.ﬁ, wher: 2
notes the field of the charge and B the field of the ;: (§
rent sheets, over the volume enclosed by tl‘1e shez‘sffbcult
being equal to zero outside the sheets). Itis _n.crt lcjlse_
to show that this electromagnetic mmnlentum‘ is 1';:.1':;1 =
1y the term ed in Eq. (8). Thus, in t}usl noniner ia :
o-rdinate system, the sum of the ta‘ngentml particle an
electromagnetic momenta is invariant.

Let us now discuss in some detail the prc;.I‘Jlem of ra;
diation force. Consider a light beam carrying a pm.ve
P. absorbed in a liquid in which the phase velomty‘is
u."/ll'{{ (see Fig. ba). Experiments by Jones an@ flhch-
ard™® have shown that the force exerted b.y the hg td
beam on the absorber is correctly given in magnitude
N (9)

f=@/wk.

A simple derivation of Eq. (9) is through the Doppler

LIGHT SOURCE

(a) th)

FIG. 5. Experiments in dynamics. (a) A light hca{ri en;u:izg
a po.we'r P exerts on an absorber immersed in & f1u1:c a ouow
(p/w)E (Jones and Richards experiment) . Per[orat'lon.s;l a.is
the absorber to move vertically in the fluid. Ti:.e lzgu:sur{ace
forced upward through the perforations and T;;l\eﬁ;squijalent
iqui i teady state.
of the liquid bulge out, in the s j o
model, in whicha the absorber can shde'bet_ween tw—ol\}“izi
These wires, representing the liguid \;.rlth mde: e:; —e szrim;m
¢ with t ical. (c) Propo
make an angle a with the vertica enk:
to verify that the force on an absorber need not ]\.a.w:dt‘m:i (;;r:c
tion of the beam if the medium lacksAiSOtropy. 'I:he :]se i
lossy dielectric that picks up the optical power from th
through tunneling.

o
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effect” or the adiabatic invariance of the photon number
in a resonator, These arguments, although correct,
are not completely satisfactory because appeal must be
made to the second quantization (E = /iw), The classical
derivation, based on the Minkovski expression for the
stress density is correct for incompressible fluids in
the steady state.’® For scalar waves, the result follows
from the expression of the canonical stress density
given in the introduction. The balance of momenta
clearly shows that, in the steady state, the surface of
the liquid bulges out (toward the less-dense medium),
the surface of the liquid being submitted to a net force

f==(B/e)n-1), (10)

balanced by surface tension, This force also follows
from the artificial dielectric model considered in Ref,
T and illustrated in Fig. 5b. This bulging out is ex-
pected to take place after a time of the order of the time
it takes for a sound wave to go from the absorber to the
'iquid surface. It has been suggested® that, for the case
i which the light-beam cross section is small compared
to the absorber-to-liquid surface spacing, the steady
state is reached after a shorter time, of the order of
the time it takes for a sound wave to move across the
beam. Experiments by Ashkin et al, ® suggest that in-
deed this shorter time is significant. Whether the final
steady state is then reached is unclear to us. These
transient effects have been mentioned because they have

been subjects of some controversy, but they are not
essential for our discussion.

Most liquids being isotropic, only the magnitudes of
f and k can be compared, It is therefore interesting to
consider the arrangement in Fig. 5S¢, where the light
propagates in a thin anisotropic film, perhaps a few pm
thick. An absorbing disk that can slide on top of the
film is submitted, according to Eq. (9), to a force
f=(P/w)k. This force, in general, does not have the
direction of the beam, With presently available lasers,
it may not be more difficult to perform this experiment
pan the original experiment of Jones and Richard, I
“hay, in fact, be easier, because the radiometric forces
that cause great experimental difficulties in the case of
an absorber located in a gas or a liquid are absent in
this new suggested experiment,

IV. WAVE PROPAGATION

We compare, in this section, the Schrddinger equa-
tion which is applicable to nonrelativistic particles, and
the Fock equation, which is applicable to paraxial beams.
The dispersion equation of an isotropic medium at some
angular frequency w is, ignoring for simplicity the v co-
ordinate,

kE+ k2= k3(x) . (11)
The (circular) dispersion curve is shown in Fig, 6a.

By substitution of ik ¥, the scalar Helmholtz equation
is obtained,

&

The dispersion relation for particles with mass
m = lm and charge e = /i in a potential vector A= @,iv)
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FIG. 6. Dispersion surfaces for optical waves in isotropic
nondispersive media (a) and massive particle (mass w) in free
space. The parabolic approximation used in beam optics con-
sists of replacing the cirele (k2+ kZ—k*=0) at some w =uy by

a parabola. This parabola is shown as a dotted line in (a).
The nonrelativistic approximation in mechanics consists of re-
placing the hyperboloid in (b) by a paraboloid in the neighbor-
hood of w=m. The laws of diffraction in f ree space and the
law of spreading of pulses in dispersive media have the same
general form. They depend on the curvatures of the dispersion
surface in the &, &, planes and &, w planes, respectively.

is simply that the length of K- 7A is invariant, i,

Separating the space and time components and setting

3=0, we have, at a fixed canonical energy w=7y,
kE+kE-2%V3(x)+ 2mEV(x)=0 (13)

Upon substitution of ik~ ¥ in Eq, (13), the Klein—Gordon
equation is obtained,

A —2ys2 =
o R & d {x) ~ 25;:.??'(1'}] ¥=0, (14)

which is equivalent to Eq. (12) if
kE(x)=22V3(x) - 2meVix) . (15)

For the nonrelativistic case, the term #2V2 can be ne-
glected in Eq. (14), Because the total energy is equal
to zero, we have &V +zfu®=0. Thus, Eq. (15) re-
quires the equality of & and mu for nonrelativistic par-
ticles, as we have indicated before,

Let us now introduce paraxial approximations in both
Eq. (11) and Eq. (13). If we assume that k. in Eq. (11)
is small compared with k, we can write

ko=l — (1/26):2 (18)

With the same substitution as before, we obtain from
Eq. (16) a scalar parabolic wave equation

; 2
-r'—?;: {k(,r,a)+[1/2ku(3ﬂé%§} [ (7)

where, in the second term in the brackets, we have
made the approximation (v, z) =~k (0, z)=ky(z), on the
ground that © does not vary very much with v. This
equation is similar, though not identical, to the equa-
tion considered by Fock.' To make contact with the
optical problem, let us indicate that in order for the
reciprocity theorem to be applicable in a natural way to
Eq. (17), ¢ must be defined as [ko(z)]'/2E, where E de-
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notes a transverse component of the electric field in the
beam. For the case where %, is independent of z, the
wave equation, Eq. (17), can be compared to the
Schridinger equation

Z
ﬁ.,--j?: [—EU(x.z)-i-(l/‘zm)‘%f] V. (18)

The correspondence between Eq. (17) and Eq. (18)is
f—2. it kg and —gU(x,z)=k(x,z). Thisis essentially
the Fock analogy that was discussed earlier, If 2, were
a function of z, a similar correspondence could be es-
tablished, merely by redefining the axial coordinate.

There is an even closer similarity between paraxial
optical waves and paraxial electron waves. Let us con-
sider a charged particle propagating in a direction close
to the z axis, Because i, is small compared with 2,
Eq. (13) can be written

k=~ (@V2-2meV)/?- j v~ 2 zv)yt%E,  (19)

By use of the substitution ik~ ¥, we obtain a parabolic
wave equation, Assuming for simplicity that the axial
motion is nonrelativistic, we obtain the wave equation

ax g
(20)

where, in the second term in the brackets, we have
made the approximation V(x,z)= V(0,z)=Vylz). Equation
(20) describes the evolution of the transverse wave func-
tion ¢ of paraxial particles, Its similarity with Eq. (17)
is obvious, Equation (20) also has the form of the con-
ventional Schrédinger equation (18) because dz/dt =ug
= (- 2meVy)'/%im ™ is the axial velocity, and —28(VVo)/2
~— 2Vy—eU, where U=V =Vy<Vy The texm - 22V,
corresponds to an unimportant phase factor on ¢ that
can be omitted, Our result simply means that, for non-
relativistic axial motions, the Schridinger equation (18)
is applicable in a frame of reference that moves at the
mean velocity u, of the electron. If the axial motion
were relativistic, only slight changes would be needed.

: | 2
= f'-a,.;’; {[— omeV(x,z)I'2+ 3[ - 2mevy )]-lre_ag} 0.

Let us illustrate the similarity of diffraction effects
between optical waves and electron waves by consider-
ing the effect of grating-type devices. The discussion
will be qualitative, but could easily be made quantitative
with the previously derived expressions. The system
shown in Fig. 7 is a sequence of metal tubes at increas-
ing voltages. If a plane electron wave enters the tubes
from the left, the electron is deflected upward, because
the phase shift introduced by the voltage is (stepwise)
linear in x. If a dc voltage is applied to the tubes, this
phase shift results from a change of the wavelength of
the electron, the frequency being constant because of
the time invariance of the system. If the voltage is ap-
plied while the electron-wave packet is traveling through
the tubes, the wavelength remains constant, because of
the axial invariance of the system, but the frequency
is changed. The phase shift, and therefore the deflec-
tion, is the same in both cases, if the voltage is applied
during a time L /x, where L denotes the length of the
tubes in the first experiment and « the velocity of the
electron. It is interesting that in the pulsed arrange-
ment. no classical force is exerted on the electron,
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FIG. 7. Deflection of an electron or optical wave by wave-

optics gratings that consist of metal tubes (a) and electro-op-
tic erystals (b) respectively. In both the mechanical and opti=
cal systems, the wave packet is deflected upward, even though
no classical force is exerted on the particle when the voltages
are turned on and off while the wave packet is still traveling
in the tubes or crvstals (second Aharonov and Bohm effect).

Yet the electron is deflected away from its original di-
rection, This effect is similar to the second Aharonov
and Bohm effect discussed in Ref. 16. However, by
considering a series of tubes rather than just two, we o
make it clear that a deflection of the average electron
path as well as a shift of the interference pattern takes
place,

Discussion of this effect for the optical deflector
shown in Fig. b, which is essentially an optical phase
array, would be identical with the foregoing. The only
possible difference between the two systems would be
that the dispersion of the electro-optic crystals used in
the optical arrangement may not be the' same as the dis-
persion of free space for matter waves. Thus, in the
pulsed experiment, the pulse lag may be somewhat dif-
ferent.

V. OPTICAL FIBERS WITH MODE SELECTION

To illustrate the application of some of the results of
the previous section to fiber optics, we investigate a
class of optical fibers that has attractive properties for
the transmission of information.

e

Consider the tapered dielectric slab shown in Fig. 8a.
The thickness of the slab is maximum along some
straight line (z axis) and decreases away from this line.
The variation of thickness is assumed to be slow, so
that the slab can be considered uniform in the neighbor-
hood of some value of ¥. The local wave number E(x)
is given by the theory of uniform dielectric slabs, It is
obtained by matching the tangential components of the
electric and magnetic fields at the slab boundaries. As
is well known, various modes can propagate in uniform
glabs. We concentrate on one of them, e.g., the Hy
mode. Because of isotropy, the magnitude & of k is the
same in all directions in the xz plane, the slab material
itself being assumed isotropic. Once the wave number
%(x) has been obtained, we can make use of the results
in ray optics and wave optics given in the previous sec-
tions. If k3(x)is, for example, quadratic inx, the rays
are sinusoids, and they have almost all the same optical
length.

A wave equation that takes diffraction into account in
the xz plane can be set up, as we have seen, through
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“~FIG. 8. Optical fibers with small pulse spreading. (a) Ta-
pe_red dielectric slab. Pulse spreading is very small for cer-
tain profiles (see Fig. 11). (b} A step in the thickness intro-
duces coupling between modes with different mode numbers in
the y direction. For properly selected dimensions, only one
mode is free of radiation loss (Ref. 22). ({(c} Coupling between
a rod earrying trapped modes and a slab carrying radiation
modes. (d) The configuration in (¢) can be analyzed by replac-
ing the rod by a distribution of electric and magnetic currents
(only one line of current is shown) and evaluating the coupling to
the surface waves.
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the formal substitution ik~ ¥ (vz plane) in the disper-
sion equation.'” The variation of the field in the y di-
rection (perpendicular to the plane of the slab), remains
as given by the exact theory of the slab. The solution
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FIG. 9. (a) A ray, at some z, is represented by a point in the
phase space k,,x. The area enclosed by three neighboring rays
(@, B, v) is invariant as z varies (Lagrange ray invariant). It .
f9llows that the density f of rays, for any continuous distribu-
tion, is invariant, df/dz=0 (Liouville theorem). (b) The prop-
agation of gaussian beams in uniform square-law media is
represented by an ellipse that rotates in phase space with a
constant rate . If the beam is injected off axis, the center of
the ellipse is off-set.

FIG. 10. TFor thick dielectric slabs, or metallic boundaries
anfi nonrelativistic particles, the theorem of Breit and Tuive,
01.-1ginally derived for cold plasmas, applies. The time of :
flight of a pulse can be obtained hy extending the ray direction
along a straight line from the origin, and assuming the medium
homogeneous up to the reflection point. This is because the
local group velocity is proportional the local & veetor. Thus
#s <k, 15 a constant of motion, that is, the pulse of light mov:as
at a constant speed along the z axis.

of the wave equation with k* quadratic in x is well known
in the quantum theory of harmonic oscillators. This is
the {?roduct of a function of Gauss and a Hermite poly-
nomial. The properties of square-law media need be
recalled only briefly, In square-law media, the center
of a beam follows a classical ray trajectory. In most
text books of quantum mechanics this result is proved
on the basis of the Erhenfest theorem. The complete
expression for the transformed field, including the
phase, obtained by Husini, ®® is much more useful for the
optical problem. Conventional modes (or stationary
states) have constant irradiances along the z axis, How-
ever, the size of beam modes oscillates along the axis
(see Fig. 9b). A simple and useful representation of
gaussian-beam modes is by a complex ray. The com-
plex-ray representation of gaussian beams is easily
g_enerahzed to space time to describe the spreading, in
time as well as in space, of gaussian wave packets.
To apply this representation, it is convenient to rotate
the coordinate system from x,v,z,¢, to ', v, 2" ¢
with the ¢ axis directed along the normal to t,he élis’—
persion surface #(K)=0 (see Fig. 6) and x',»’,2’ along
the directions of principal curvature. In sp'ace time
the complex ray ¢(z) becomes a 3 x3 complex rnatrix'
2 (#') which obeys a matrix ray equation.'® This de-
s._c:ription ties the spreading of a gaussian pulse along a
dispersive line to the diffraction of a gaussian beam in
space. The formalism is the same as that given in Ref.
19 except for the increased number of transverse di-
mensions. A gaussian beam can alternatively be rep-
resented by an ellipse that rotates in phase space.
'Iihis ellipse is the locus of the 1/¢ points of the Wigner
d'Jstribution function (for a definition of the Wigner func-
tion, see Ref. 5, p. 326). Figure 9b shows that this is
a convenient way to generate the beam profile.

In order to obtain information concerning the prop-
agation of optical pulses, we need to know, not only k(x)
but also the variation of # with w, Iithe ratio (w/k)/ :
(8k/8w) of the local phase velocity (v =w/k) to the local
group velocity (x= 8w/ 8k) happens to be independent of
the x coordinate, the time of flight of a pulse along a ray
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FIG. 11. (3) Quadratically tapered dielectric slab. #; denotes
the angle of a ray (H; mode in the direction perpendicular to
the slab). (b) Ratio of the local magnitudes of the phase () to
group (u) velocities as a function of the slab thickness [wd/e

= (nf =120/ coso] for n=10, 1.4, and 1.01. The ratio /u
is stationary at dee. (c) Pulse delay as a function of the angle
¢y that the ray makes at the origin with the z axis. (The num-
ber of modes is approximately proportional o ﬁ%.) For 15
modes, A=1 um, n=1,01, pulse spreading is less than 0.03
ns/km.

trajectory is proportional to the optical length of that
ray. Inthat case, equal optical lengths imply equal
times of flight, and therefore small pulse spreading, an
essential feature for high-data-rate communication,
This is not the case in general, however, For most
slabs, the ratio ©/u varies rapidly with the slab thick-
ness, and therefore with x.

It is interesting that when the slab thickness, 2d, is
large compared with the wavelength, the dispersionis
the same as that of a cold plasma with plasma frequency
w,(x), or that of a relativistic particle whose mass m is
a function of ¥, or a nonrelativistic particle in a potential
Vlx). The kinematics and dynamics, which follow from
the dispersion equation, are the same for these different
media and particles. In particular, we can apply to
tapered slabs the Breit and Tuive theorem,?® originally
derived for cold plasmas and also applicable to non-
relativistic particles such as bullets in the earth grav-
itational field, the effect of the atmosphere being ne-
glected. This theorem says that the time of flight of a
pulse can be evaluated by assuming that the path is made
of two straight lines, defined from the slope on axis as
shown in Fig, 10, This is another way of saying that
the horizontal component of the group velocity is a con-
stant of motion. For such dispersive systems, the
canonical momentum JKk is proportional to the group
velocity 0. Thus, for a thick diele
spreading is, for any profile, justas largeas{

¢lad fiber having the same apparent width. Low pulse

tric slab,

puige
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spreading can be obtained for different profiles (e.g.,
quadratic or linear dependence of % on |x|) only if the
slab thickness is so chosen that the ratio »/u has the
proper variation with x.#! This is illustrated in Fig, 11,
in which the time delay is shown as a function of the
angle 6, that the ray makes with the z axis. Very low
pulse spreading is obtained when the angle ¢ (a mono-
tonic function of the slab thickness, defined in Fig, 11
caption) is equal to 0.65, for n=1.45.

CONCLUSION

The presentation of the mechanical theory of light
and its application to fiber optics was sketchy. However,
the works listed in the references should make up for
the missing steps. One key point made in this paper is
that, in many important respects, no distinction need
be made between matter waves and optical or acoustical
waves. The second point is that numerous results in
classical or quantum mechanies can be used in f{iber
optics, provided that the dynamical significance of the
analogy is clearly understood. We have shown, in ~—
particular, that a well-known result in mechanics, the
uniform horizontal motion of a bullet on earth, has, as
a counterpart in optics, the constancy of the horizontal
component of the group velocity in thick dielectric slabs,
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