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The identification: medium refractive index n — nonrelativistic particle velocity ¢, in the
analogy of geometrical optics with nonrelativistic particle mechanics is physically correct and
useful, but can easily be misinterpreted. The conditions under which the analogy holds are
outlined. The significance of Descartes’s mechanical models is also discussed.

The identification:

medium refractive index n
= nonrelativistic particle velocity v (1)

in the analogy of geometrical optics with nonrelativistic
particle mechanics has been clearly and correctly discussed
by many authors (e.g., Refs. 1-4), Other authors. however,
have suggested that this analogy may not be physically
correct. It is the purpose of the present paper to clarify, in
perhaps more detail than has been done elsewhere, the
significance and limitations of that analogy. The difficulties

“that are most often encountered seem to be the following.

The relation in (1) appears to be dimensionally incorrect,
since # is dimensionless while v has the dimension of the

.ratio of length and time. In reality, only proportionality of

v and 7 is intended in (1). The dimensions are therefore
unimportant. A second, more fundamental difficulty is that
velocity is obviously a time-dependent concept. On the other
hand, the concept of time should not enter in the analogy,
a point that we shall emphasize later. The solution of that
apparent contradiction is that v in (1) is only a short-hand
notation for [—2¥(x)]'/2, where ¥ denotes the scalar.
time-independent potential to which the massive particle
is submitted. With that understanding, the mechanical
analogy for ray trajectories given in (1) is both physically
correct and useful, not only for predicting ray trajectories,
but also for solving problems involving forces in the steady
state.

Historically, geometrical optics has been concerned with
ray trajectories defined as curves in ordinary space, while
classical mechanics treats in addition the position of a
particle along its trajectory as a function of time. Thus, for
classical mechanics, the full space-time Hamilton equations
are essential, while, in many problems of optics, the Ham-
ilton equations can be restricted to the three-dimensional
space. We need emphasize that the analogy in (1) holds
between monochromatic light rays in lossless isotropic
media and trajectories in free space of monoenergetic
nonrelativistic particles submitted to time-invariant scalar
potentials. The motion of wave packets as a function of time
is not relevant to such a comparison. This point is made
clear by Gabor? who writes “Hamilton’s principle is too
general for the purpose of electron optics. It contains time,
which is without interest if the fields are stationary . . . .
First, we fix the energy constant, that is to say, we restrict
the discussion to monochromatic light and monoenergetic
clectrons.” Similarly, Luneburg,! in his discussion of the
mechanical analogy, warns his readers (in p. 85): “the ve-
locity of the electron is greater in a medium of greater n, and
therefore is nor to be identified with the velocity of light on
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the rays, according to Huygens’s definition™ (that is, for
nondispersive refracting media). We know. from the
Heisenberg uncertainty relations. that a particle whose
energy has a very precise value cannot be localized on its
trajectory. Therefore, for such a particle. times of flight and
velocities cannot be defined. Similarly, times of flight are
undefined for optical rays that are strictly monochromat-
ic.’?

To be more specific, let us write the equation obeyed by
the trajectories in space, x(t), of nonrelativistic particles
having zero total energy in a gravitational potential ¥(x).
We have

d¥x (1) : _
= — 2
‘ 02 v(x), (2a)
where
lax] _ Ve
it A1 LG (20)

|dx| represents the clementary length of the trajectory, and
the parameter ¢ has the dimension of time.

Light rays in isotropic time-invariant media with re-
fractive index n(x) (where  is obtained, for exam ple, from
the measurement of the angle of refraction on homogeneous
samples of the medium considered) obey the equation

dx(t) _ n3(x)
e =7 (5 G

where

L W (3)

dr

and the parameter 7 has the dimension of a length.

Comparison of (2) and (3) shows that the equations
obeyed by nonrelativistic particle and light ray trajectories
are the same when #2(x)/2 in (3) is proportional to — ¥(x)
in (2). The proportionality constant can be set equal to
unity, for simplicity, with the appropriate dimensions. Thus,
the fact that (1) seems to lack the proper dimensions is
unimportant as Ki:ne and Kay have pointed out.? Note that,
in Eqs. (2) and (3), t is defined as a specific function of the
length along the trajectory. It is defined by (2b) for non-
relativistic particles, and by (3b) for light rays.

We now arrive at a critical point: it is true, but not rele-
vant to the comparison made, that t in (2) can be given the
significance of a time of flight. In other words, it is correct,
but perhaps misleading, to define the right-hand side of

dx
—! =p(x) (4)
dr (
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as the magnitude of the velocity of the nonrelativistic par-
ticle.

Equations (2) and (3) can be given alternative equivalent
forms. when differentiation with respect to the ¢ parameter
is replaced by differentiation with respect to the ray length
5. with ds = |dx|. We have, respectively,

i & (a3 < o (1)
X d,\'( w ds 2

(nonrelativistic particle trajectory) (3c¢)

( i al ‘ng) =v 'n___%x))
) g5 (1) (—
(light ray trajectory). (3d)

Still another form is obtained when x is differentiated with
respect to a parameter that varies monotonically along the
trajectory, but which, unlike the parameters ¢ or s used
earlier, is nor a specific function of the arc length (see, for
example, Ref. 4, p. 293). The mathematics is simplified
when such a parameter is used, but the formulation becomes
more abstract. [t need not be discussed further here.

The physical significance of the equivalencesetin (1) is
most obvious from a wave optics point of view. What (1)
says is that spatial trajectories in isotropic time-invariant
media depend onlv on the wave number law k(x). Fur-
thermore. the trajectories are unaffected if k(x) is multi-
plied by an arbitrary constant. In optics, k(x) is, by defi-
nition, proportional to the refractive index n(x) of the me-
dium, the frequency being kept fixed. For nonrelativistic
particles submitted to a scalar potential ¥(x), k(x) is pro-
portional to v(x) = [—=2¥(x)]'/2, the total energy being kept
equal to zero, according to the de Broglie relation. Thus,
proportionality between the wave numbers at any point in
space leads to relation (1), Therefore, if the refractive index
is understood, as usual, as the ratio of the velocity of light
in free space to the phase velocity in the medium at the point
considered (and at some fixed frequency, or energy) the
refractive index of a nonrelativistic particle with velocity
v is correctly defined as a quantity proportional, or equal,
toe. Inshort, n = v. Any other relation that we may think
of (such as n = 1 /v) would be incorrect for the problem
considered. The conclusion that n = v by no means implies
that, inversely, the velocity of a light pulse in 2 medium with
refractive index n has a velocity proportional to n. The
reason why the argument cannot be taken the other way
around is that a medium, in general, does not have the same
dispersion as free space. Knowledge of the refractive index
(n) of an arbitrary medium does not entail the knowledge
of its dispersion (dn/dw), in contradistinction to the case
of a particle in free space.

There is one more point that may cause difficulties in the
analogy presently discussed: it is well known that the wave
vector k associated with a charged particle is defined only
within the gradient of an arbitrary function of x. However,
as one easily proves, ray trajectories are unaffected by this
gradient. The same holds true for optical rays: the dis-
placement at each point in space of the surface of wave
normals, H(ky, k. k.) = 0 by a vector Vf(x), where f(x)
is arbitrary, does not affect the optical ray trajectories. The
medium, however, appears to be anisotropic after this
transformation, and the Hamilton ray equations must be
used in their general form.
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(a) (b)

Fig. 1. Mustration of Descartes’s mechanical analogy of the refraction
of light rays. (a) A bail moving in free space traverses a membrane that
reduces the magnitude of its momentum by a factor independent of the
incidence angle. The tangential component of the momentum s is in-
variant because the membrane does not exert any force on the ball in that
direction, (b} A light ray is refracted away from the normal by going into
4 less dense medium, The tangential component of the vector k, whose
magnitude is independent of the incidence angle, is wvariant. sin (7)/
sin (£7) 15 a constant in both cases. The Descartes-Snell law ol refraction
follows quite generally from isotropy und translational invariance of the
medium,

There are of course mechanical systems. different from
the one considered above, to which the analogy in (1) does
not apply. For example, if a charged particle has a varying
mass because of radioactive decay, or a varying effective
mass because of interaction with the atoms of a nonhomo-
geneous crystal or motion in a fluid, its trajectory cannot
be compared'to that of light rays on the basis of (1). The
analogy that we have discussed is restricted to nonrela-
tivistic particles of constant mass in free space. This still
leaves us with the broad and important field of electron
optics.®

Let us add one point of historical interest. It is generally
agreed that the analogy in (1) was first proposed by the 17th
century philosopher René Descartes. In his Dioptrigue
(1637), Descartes’ points out an analogy between the tra-
Jectory of a light ray refracted at the boundary between two
media, such as air and water, and the spatial trajectory of
a ball traversing a membrane that reduces its velocity, in
magnitude, by a factor independent of the angle of inci-
dence. It is understood, in the Descartes analogy, that the
ball, unlike the ray, is moving all the time in air.® and that
the action of air, as well as that of gravity, can be neglected,
This analogy is in agreement with modern concepts in
physics provided that the quantity that Descartes calls the
“determination” of the ball be understood as the ball “ca-
nonical momentum,” which is proportional to the wave
vector in the special case of lossless media® (see Fig. 1). As
far as dynamical (force) concepts are concerned, Descartes
has shown remarkable foresight in picturing light, in the
steady state, as the transmission of some kind of pressure.
Recent experiments'® have shown that the pressure exerted
by light on absorbers located in inviscid fluids (radiation
pressure) is indeed equal to the canonical momentum of the
ray. This result, in fact, holds for any linear wave.!! It holds
true, in particular, for the de Broglie matter waves associ-
ated with nonrelativistic particles.

In the above discussion, time has essentially been ignored.
In many systems, however, the propagation of light pulses
is of paramount importance. Readers interested in the
propagation of pulses of electromagnetic radiation are re-
ferred to a beautiful paper by Weinberg,'? based on the
Hamilton equations in space-time. The condition under
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which the Fermat principle can be considered a principle
of minimum time, which is discussed in that paper, provides
further clarification of the analogy in (1).

The existence of general methods to describe the motion
in space-time of optical pulses obviously does not invalidate
the analogy in (1), aimed at solving a simpler problem. It
is desirable, and of course physically correct, to reduce the
number of independent variables from four (space-time)
to three (space). wherever possible. This can be done when
the medium is stationary and the light is monochromatic.
In some systems (e.g.. in fiber optics) one is concerned with
the propagation of optical pulses in media that are not only
stationary, but also uniform along a spatial (say z) direc-
tion. In that case, the axial component, k., of the four-wave
vector, as well as its time component, w, are constants of
motion. In some special cases (e.g., cold plasmas, thick di-
electricslabs. . .), the axial group velocity, as well as k. and
w. is a constant of motion, as is the case in similar problems
of nonrelativistic mechanics.?

What makes the analogy in (1) so valuable is that the
quantities introduced, namely n and ¢, have a simple and
direct physical significance. This is not always the case for
the more general quantities (e.g., canonical momenta) in-
troduced by Hamilton. Differences in motivation and lan-
guage between specialists in optics and in physics has un-
fortunately occasionally created a confusion concerning the
significance of the mechanical analogy of light. It is hoped
that the present article will help clarify the nature of the
problem that the equivalence refractive index = velocity is
intended to solve, and the limitations of that analogy.
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